
Chameleon Motion Controller Speeds Machine Upgrades

J. Randolph Andrews
Douloi Automation, Inc.

740 Camden Avenue Suite B
Campbell, CA  95008-4102

(408) 374-6322

Abstract

Most designs for automatic machines do not begin

with a clean sheet of paper. Previous versions of an automatic

machine represent investments of mechanical, electrical, and

particularly software engineering. Minimizing changes while

pursuing machine improvements reduces engineering re-

work and relearning, retains a track record of proven perfor-

mance, and reduces time to market. How can an improved

motion control system be placed into an already present

machine architecture with minimum system impact?

A motion control approach is described which has a

chameleon-like ability to conform to the surrounding system.

For example, the chameleon can be configured to electrically

impersonate a predecessor controller’s hardware interface as

well as software command set while delivering improved

controller performance and value. Engineering investment,

including staff learning curve for a new controller, is reduced

saving time and money.

Introduction

The objective is to reduce machine deployment time by

minimizing system impact of the motion controller. The

motion controller in an automatic machine might be regarded

as a puzzle piece that fits into a total machine architecture.

The controller puzzle piece has relationships with the various

elements around it and with the developers who use it. On one

side are the attributes that define the user’s view of the

controller. The user view includes elements such as:

• Machine structure

• Controller Command Set

• Communication Hardware

On the other side are controller attributes that relate to

the machine’s view of the controller. The machine view

includes:

• Amplifier/Driver control signals

• Position encoders, sensors, and discrete I/O

The goal is to have the motion controller accommo-

date preexisting user and machine views. This is particularly

important when there is significant engineering investment

behind the creation of these views. If the controller cannot

display a chameleon like behavior to blend into the existing

system, the user must introduce additional engineering effort

to bridge any gaps.

Considering the possible risk and expense of changes,

why are changes pursued? Changes are made to:

• Improve system performance

• Change motor type/technology

• Reduce Costs

• Move from in-house to off-the-shelf solutions

Approach

One approach to support different motion controller

roles is to mimic a Swiss army knife and have built-in to the

controller all possible methods of use. This approach is not

realistic as there are as many different methods of use as

prospective users.

An alternate approach is to have a basic “native”

control system which is augmented by resident application

programs. These application programs can replace or supple-

ment native control functions to create new capabilities.

Paper Presented at the
1997 Incremental Motion

Control Systems and
Devices Symposium

Copyright © 1997 Douloi Automation



The “native” system constitutes the controller behav-

ior as it comes “out of the box”. Native components include:

Encoder Hardware

Description: Physical electronics that reads position

sensors and reports motor position.

Inbound: Electrical signals from position sensors

Outbound: Actual motor position

Communication Hardware

Description: Physical hardware that electrically con-

nects host and motion control card.

Inbound: Electrical signals from host

Outbound: Raw data available to motion controller

Command Interpreters

Description: Software component that establishes the

grammar of communication, the letters, words, or

codes that comprise the command set.

Inbound - Raw data from communication hardware

Outbound - Specific function requests

Profilers and Coordination

Description: Converts abstract motion commands into

detailed trajectories indicating desired or “commanded”

motor positions every controller sample period, i.e.

every 500 microseconds.

Inbound: Abstract movement commands

Outbound: Motor commanded positions presented at

sample rate intervals

Control Laws

Description: Calculations that use profiler informa-

tion and discrepancy between actual and commanded

positions to produce corrective action.

Inbound: Profiler commanded position, actual motor

position, and possibly additional profiler information

Outbound: Torque request

Amplifier Hardware

Description: Physical hardware which changes ab-

stract torque request into physical signals that direct

the servo amplifier.

Inbound: Torque request

Outbound: Voltage and possibly other related signals

Some of the native components are hardware compo-

nents and some are software components. Information gener-

ally flows through native motion controller components in the

order indicated by Figure 1.

Encoder
Hardware

C o m m
Hardware

C o m m a n d
Interpreter

Profi lers &
Coordinat ion

Control
Law

Ampli f ier
Hardware

Figure 1. Native Information Flow

The figures are open boxes indicating functions that

are available “out of the box”. Note that the lines connecting

boxes might represent multiaxis vectors of information, not

just a single axis. In a motion controller there may be several

such chains controlling independent mechanisms.



Adjacent to the native system is a user application

software level. This user level allows components to be

constructed that operate at sample-rate speeds and in sync

with the motion control native system. User level components

are represented as boxes with rounded corners that are

fashioned for an application specific need. These user level

components can be used to alter normal information flow

through the native level. Figure 2 shows an example user

component which is replacing the native profiler with a user

level profiler.

Profi lers &
Coordinat ion

User Level
Profi ler

Figure 2. User Level Component

In additional to user-level software components the

physical hardware itself may need to change to accommodate

the system. Field Programmable Gate Arrays (FPGAs) are a

very flexible means of reconfiguring hardware to meet appli-

cation specific needs. A new hardware structure can be

“downloaded” into a standard motion controller product to

realize a “hardware special” that solves an application spe-

cific problem. In a manner similar to user components in

software, the bulk of the hardware remains unchanged while

one section is spliced or substituted with new application

specific behavior.

The ability to synthesize new hardware functions will

most likely not be in end-user hands for several years due to

the software tools and background needed to describe the new

hardware. However a motion controller vendor is in a good

position to rapidly respond with an application specific FPGA

design change.

Topologies

Multiple user components can be present in a system.

User components can have various relationships to native

components.

Substitution

Substitution replaces a native control component with

a user level component. Information flow connections are

made on each side of the new user component. Figure 2 is an

example of a substitution. All of the remaining components

of the native control system continue to operate as normal.

Only a particular native component has been changed. This

helps localize change and minimizes the amount of work that

must be done to realize a different controller behavior.

Splicing

Splicing a user box into the information flow of the

native controller augments or changes the information in

some manner but continues to use all of the native elements.

A user component can redirect information from the native

system, modify it, and replace it in the original  flow.

Concatenation/Redirection

In some cases it is beneficial to have user components

create connections between independent motion groups to

realize some concatenated, or “compound” behavior.

Examples

The following examples illustrate different user and

machine views and how user components augment the native

controller capabilities to provide these views.

New Amplifier Format

Servo amplifiers are commonly driven by +/- 10 volt

signals representing the desired motor current. However

some amplifiers have different formats. A chip-level ampli-

fier, for example, has a current magnitude signal and a current

direction signal as a digital input. What should be done to

accommodate this amplifier?



A typical solution is to create an additional piece of

electronics that presents the absolute value of the conven-

tional +/- 10 volt signal as well as the direction based on

comparing the original voltage to 0 volts. However this

represents additional engineering work and creates a packag-

ing problem. Where is this new piece of electronics placed?

An alternative solution is to create a user component

that performs the absolute magnitude and direction calcula-

tion in software rather than hardware. This is done by splicing

the calculation in between the control law and the amplifier

hardware on the motion control card as shown in Figure 3.

Ampli f ier
Hardware

Magni tude &
Direct ion 

Control
Law

Figure 3. Magnitude/Direction Amplifier Splice

The user software component that performs this splice

for the X axis is shown below.

Procedure ConvertAmplifierSignals;
begin
while true do

begin
yield;
XAxis.SetDac(

abs(XAxis.CommandedTorque));

if XAxis.CommandedTorque>0 then
XAxis.SetCompareBit(true)

else
XAxis.SetCompareBit(false);

end;
end;

The procedure is started as an independent activity

and performs an ongoing loop. The first command inside the

loop is "yield" which causes the procedure to wait until the

next controller sample period. The absolute value of the X

axis commanded torque is then assigned to the X axis digital

to analog converter. The compare bit, an output bit available

for the axis, is set to true if the commanded torque is greater

than 0 and false if the commanded torque is less than 0. The

magnitude/direction function has been realized in software.

A different kind of amplifier problem is brushless

commutation. Here, torque amplitude information must be

distributed to multiple motor coils based on motor position

through a trigonometric calculation. This can be performed

by a user component that makes use of additional DACs on the

controller card to provide the additional analog channels for

the brushless motor. This technique requires that the software

sample rate be much faster than the commutation frequency.

This is commonly true in linear brushless motors but might

not be true for higher speed rotational brushless motors.

Control Law Substitutions

A conspicuous candidate for change in the native

system is the motion control law itself. The native control law

is a PID filter. Alternate filters can be built and implemented

to realize improved performance for a particular application

or to emulate a predecessor controller. Replacing the control

law is a substitution as shown in Figure 4.

User Level
Contro l  Law

Control
Law

Figure 4. User Level Control Law



Control Law Extensions

Rather than replace the control law it might be desir-

able to augment it instead. The most common augmentation

is related to feed-forward techniques. Here the native PID law

calculates desired motor torque. Added to this torque, after

the control law, is additional torque based on the motion

profile or motion of other axes that have known geometric and

dynamic coupling to the controlled axis.

Different Communications

Motion controllers often receive commands from a

host PC computer. How these commands are provided vary.

Even for commands being sent through the host computer’s

ISA bus there are various methods including IO registers, IO

FIFOs, and dual-port memory.

Through the use of FPGA hardware connected to the

ISA bus, the motion controller’s communication interface

can be altered to these various forms. Along with the new

hardware is most likely a new command structure and method

of sending information. A user component can be built to

implement this new command set which is received through

the new command hardware. This is shown in Figure 5.

C o m m
Hardware

Command
Interpreter

Profi lers &
Coordination

Alternate
Interpreter

Alternate
Comm Por t

Figure 5. Alternate Communication

Kinematics

Most multiaxis motion controllers are designed for

connection to Cartesian style machines. Coordinated “vec-

tor” style motion produces straight lines in a Cartesian

mechanism.

Mechanical aspects of applications may make other

mechanism geometries advantageous, such as the popular

“SCARA” form or mechanisms that use pivoting, rather than

translating members.

Even though the mechanism is not Cartesian it is

desirable to present a Cartesian user view. This can be done

by placing kinematic equations into the native motion con-

troller. The simplest place to put the kinematics is in between

the profiler and the control law of a Cartesian coordinated

group. The kinematics transforms the sample rate Cartesian

commanded positions into joint positions. These joint posi-

tions then flow into the control law. This splice is illustrated

in Figure 6.

Control
Law

Profi lers &
Coordinat ion

Kinemat ic
Equat ions

Figure 6. Kinematic Splice

This technique is most easily implemented by per-

forming the kinematics at the controller sample rate. Fortu-

nately hardware floating point coprocessors available in

modern motion controllers make real-time kinematic calcu-

lations convenient.



A kinematic example is shown in the following pro-

gram listing.

Procedure PerformKinematics;

var C,J:T2SingleVectors;

begin
while true do

begin
yield;
C.Init(

Robot.XAxis.CommandedPosition,
Robot.YAxis.CommandedPosition);

CartesianToJoint(C,J);

Mechanism.SetCommandedPosition(
J.LongintX,J.LongintY);

end;
end;

As in the amplifier splice, the software is performing

an ongoing loop. The first step is again "yield" which waits for

the next sample period. "Robot" is the name of the axis group

being directed in Cartesian space. The current position of

Robot is collected. A procedure is called, CartesianToJoint,

which maps the positions into joint space through geometry.

The commanded positions of the mechanism joints are then

set. In the current embodiment, commanded positions cannot

be both read and set for the same axis group, so two different

axis groups are involved.

Conveyor Tracking

Conveyor tracking is the ability to perform a motion

operation, such as acquiring a part of painting a surface, on

an object which is not stationary but moving relative to the

mechanism. In common practice moving objects are on a

translating conveyor. The mechanism’s operation travels

along with the part on the conveyor.

Conveyor tracking can be implemented by combining

the motion of two separate native coordinated groups. One

group is performing the machine operation in a stationary

frame as if the subject part was not moving. The second

coordinated group performs just the translation motion. The

user component combines the sample-rate generated motor

positions from each of these two sources to constitute a new,

superimposed motion that is expressed through the physical

target mechanism. This is illustrated in Figure 7.

Superposi t ion
Equat ions

Profiler for
Group 1

Profi ler for
Group 2

Control
Law

Figure 7. Conveyor Tracking Superposition

This conveyor tracking example is similar to the

kinematic example except there are two profiler sources

instead of just one feeding the user level component. The

combined result is analogous to having the mechanism

mounted on top of a moving platform.

The user component that performs this conveyor track-

ing superposition is shown below:

Procedure PerformConveyorTracking;
begin
while true do

begin
yield;

Mechanism.SetCommandedPosition(

Robot.XAxis.CommandedPosition +
Conveyor.XAxis.CommandedPosition,

Robot.YAxis.CommandedPosition +
Conveyor.YAxis.CommandedPosition

);
end;

end;



In this software component the Robot is performing

the basic operation. The conveyor, a separate coordinated

group from the robot, is independently being directed to

follow the physical conveyor. Performing conveyor tracking

involves adding these two motions together. This is done by

setting the mechanisms position to be the sum of the X and Y

movements of the two axis groups contributing to the motion.

This addition is done every controller sample period. Because

the motion is composed of profiled contributions, the super-

imposed result is profiled and smooth.

Space and Time Filters

It is sometimes necessary to perform smoothing and

filtering operations on motion. Depending on the needs of the

application this may occur in one of several places. One

opportunity to smooth a curved trajectory is to splice spline

calculations in between the commands directing motion and

the profiler. A small number of vectors expands to a higher

number of finer resolution vectors which is submitted to the

profiler for constant speed motion along the curve. This is

performing spatial filtering, the removal of high “frequency”

corners from a curved path, as shown in Figure 8.

Profi ler &
Coordinat ion

C o m m a n d
Interpreter

Spl ine
Equat ions

Figure 8. Spline Splice Before Profiler

An alternative place to perform smoothing is after the

profiler and before the control law, as shown in Figure 9.

These filters are causal in time as compared to the previous

spatial, a-causal approach.  Software filters can also be

applied to noisy input signals to eliminate false triggers.

Control
Laws

Profi ler &
Coordinat ion

Low-Pass
Posit ion Fil ters

Figure 9. Position Filter Splice After Profiler

Total Replacement

For the hard-to-satisfy user there is always the possi-

bility of Total Replacement as shown in Figure 10.

Prof i lers &
Coordinat ion

Contro l
Law

Ampli f ier
Hardware

C o m m
Hardware

Encoder
Hardware

C o m m a n d
Interpreter

Figure 10. Total Replacement by User Level



In this case, no native components are used at all

except for the software real-time framework hosting both

native and user level components. Here all of the elements of

the control system are provided at the application level and

run at normal controller sample rate speeds. Because no

native level components are being used this requires the

greatest engineering contribution from the user. However this

approach also affords the most flexibility.

Chameleon Controller Attributes

In order to realize these chameleon style system changes

certain motion controller attributes are required. The user has

to be able to write real-time application programs that operate

at native sample-rate speeds. These programs must be able to

coexist in a multithreading environment so as to make a

contribution but not interfere with other software activities

going on in the controller.

Making these types of changes has to be easy. Motion

control users can’t be expected to dive into deep and compli-

cated motion controller internals. The native system must

present opportunities for the user components to connect, and

software tools must be available to make the job easy for the

user, not just the motion control developer.

Creating these types of components requires having a

clear view of the result. The software tools must support

construction of diagnostic instruments and methods of study-

ing and recording what is happening in the motion controller.

Data collection must be done in a non-intrusive manner so

that user components can be debugged during normal ma-

chine operation.

Summary

If each component in an automation system is func-

tionally rigid and inflexible, a large amount of responsibility

falls on the integrator to fill in the gaps and glue together the

various automation pieces. Having a controller than can

accommodate system variations, fill-in the gaps and conform

to the problem at hand reduces the total engineering expense.

Bibliography

1) Andrews, J. Randolph: "Motion Server - A Next
Generation Motion Controller Architecture”, In
Proceedings of the Twenty Fifth Annual Symposium
on Incremental Motion Control Systems and Devices,
San Jose, CA, 1996.

2) Andrews, J. Randolph: "Advanced Motion Solutions
Using Simple Superposition Technique”, In
Proceedings of the Twenty Third Annual Symposium
on Incremental Motion Control Systems and Devices,
San Jose, CA, 1994.

3) Cox, Brad: Object Oriented Programming: An
Evolutionary Approach, Addison-Wesley Publishing,
1986, 1991

4) Ellis, George: Control System Design Guide,
Academic Press, San Diego, 1991

5) Franklin, Gene & Powell, David: Digital Control of
Dynamic Systems, Addison-Wesley, Massachusetts,
1981

6) Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides: Design Patterns - Elements of Reusable
Object-Oriented Software, Addison Wesley
Publishing, Massachusetts, 1995

7) Meyer, Bertrand: Object-oriented Software
Construction, Prentice Hall, New York, 1988


