
1

Douloi Automation, Inc.
3517 Ryder Street
Santa Clara, CA 95051-0714

Voice (408) 735-6942
Fax (408) 735-6946
EMail Info@douloi.com

Instruction Manual for
Motion Server &
ASCII Command Interpreter

March, 1999

Copyright © 1997, 1998, 1999
Douloi Automation, Inc.
All Rights Reserved

2

3

Table of Contents

1) Introduction... 7

Welcome! .. 7
Objective of Document .. 7
Motion Server Specifications .. 8

Motion System .. 8
Servo Specifications ... 8
Servo Capabilities .. 9
Stepper Capabilities .. 9
Timer Event .. 9
Multiple Motion Application Threads ... 10
Microsoft Windows ... 10
Long-Slot ISA Format .. 10
Servo Application Workbench ... 11

Methods Of Use ... 11
Servo Application Workbench ... 11
SERVOLIB.DLL Library .. 12
ASCII Commands ... 12
Binary Commands .. 12

2) ASCII Communication Protocol ... 13

Purpose ... 13
Serial Port Configuration .. 13
Procedure Message Format .. 13
Object Message Format .. 14

3) Command Reference ... 17

Command Summary .. 17
ABT (Abort) ... 19
ACL (Accel) ... 19
ACP (ActualPosition) .. 20
AIC (ArmInputCapture) .. 21
AMB (AppendMoveBy) ... 21
AMT (AppendMoveTo) ... 22
ARC (AppendArc) .. 23
AUT (AbortUserTask) ... 24
AXC (ArmIndexCapture) .. 24
BMB (BeginMoveBy) .. 25
BMC (BeginMoveAlongCurve) .. 26
BMT (BeginMoveTo) .. 27
BST (BeginStop) .. 28

4

BUT (BeginUserTask) ... 28
CAP (CapturePosition) ... 29
CAT (CaptureHasTripped) ... 30
CIO (ConfigureIOBitAsOutput) ... 30
CIV (SetCoordinateInversion) ... 31
CLR (Clear) ... 32
COP (CommandedPosition) ... 32
DCL (Decel) .. 33
DEP (DestinationPosition) .. 34
DSP (Dispose) ... 34
ENA (Enable) ... 35
ERL (SetErrorLimit) ... 36
ERP (ErrorPosition) .. 36
GAI (Gain) .. 37
INB (InputBit) ... 38
INI (Init) .. 38
ITG (Integrator) .. 39
JOG (Jog) .. 39
LIV (LoopInversion) ... 40
LNK (LinkToBuffer) .. 41
MAC (MoveAlongCurve) ... 42
MIF......... (MoveIsFinished).. 42
MTR (Motor) .. 43
MTT (MotorType) .. 44
MVB (MoveBy) ... 45
MVT (MoveTo) ... 46
NLT......... (SetNegativeLimit) ... 47
PLT (PositiveLimit) .. 47
PUT (SuspendUserTask) ... 48
RSA......... (ResetAllocation) .. 49
RSW (ResetWatchdog) ... 49
RUT (ResumeUserTask) ... 50
SOB (SetOutputBit) ... 51
SOE (SetOutputEnable) ... 51
SPD (Speed) .. 52
STP (Stop) .. 53
SUT (ScheduleUserTask) .. 53
TRQ........ (CommandedTorque) .. 54
UHD....... (UserHasDisabled) ... 54
USB (User Boolean) .. 55
USL (UserLongint) ... 56
USS (UserSingle) ... 56
UTP (UserTaskPresent) .. 57
WHT (WatchdogHasTripped) .. 58
ZER......... (Zero) .. 58

5

4) Command Examples .. 59

Objective ... 59
Single Axis Stepper Motor Movement ... 59
Single Axis Servo Motor Movement .. 59
Two Axis Coordinated Group.. 60

5) Cables and Connectors .. 61

Description .. 61
Axis Group Connectors ... 61
I/O Connector .. 61
E-Stop Connector ... 61
External Bus Connector ... 61

Axis Signal Descriptions .. 62
Encoder A+, A-, B+, B-, I+, I- ... 62

Functional Description .. 62
Electrical Description ... 62

Amp Enable High, Amp Enable Low .. 63
Functional Description .. 63
Electrical Description ... 63

Position Capture ... 63
Functional Description .. 63
Electrical Description ... 63

Position Compare ... 64
Functional Description .. 64
Electrical Description ... 64

Motor Command.. 64
Functional Description .. 64
Electrical Description ... 64

Step Pulse, Direction ... 64
Functional Description .. 64
Electrical Description ... 65

+5 Volts, Ground ... 65
Description ... 65

Pin Numbering Conventions .. 65
Axis Group Connector Definitions, 2-Row IDC ... 66
Axis Group Connector Definitions, D-Style ... 68
I/O Connector Definition ... 69
EStop Connector Definition.. 70
External Bus Connector .. 71

6

7

1Chapter

1) Introduction

Welcome!
Welcome to Motion Server and Douloi Automation's Motion Control
software components, tools to simplify and accelerate the creation of
motion control applications.

Douloi Automation wants to encourage your project's success. Free techni-
cal support is available to answer your questions, assist you through
trouble-spots in product use, and to recommend strategies and approaches
for solving different aspects of a motion control problem. Sample code,
application prototypes, and application notes can be provided to respond to
specific questions you may have. We would much rather have you call and
get answers than to be frustrated or slowed in your automation project.
Please feel free to contact us at:

� voice (408) 735-6942
� fax (408) 735-6946

� EMail info@douloi.com

Additional information is also available at Douloi's web site,
www.douloi.com

Objective of Document
This document provides information on the use of the ASCII Command
Interpreter for directing Motion Server controllers. The ASCII command
interpreter requires the DMS-AUX-P1 accessory to supplement Motion
Server with a serial port. ASCII commands can be used from any language
system that allows reading and writing to the serial port of the DMS-AUX.
For instructions on setting up the controller please consult the setup
chapter in the Instruction Manual for Motion Server and Servo Application
Workbench.

8

User Manual for Motion Server and ASCII Command Interpreter

Motion Server Specifications

Motion System

� 486 DX/2, DX4 or 5x86 Processor
� 4, 8, 12, or 16 axes per system

� Servo or Stepper on per-axis basis
� Multiple independent axis groups

� Trapezoidal and S-Curve profiling
� Custom profiling at application level

� 32 bit position management
� Sample rates from 1 to 4 kHz

� Linear, circular, curve interpolation
� Electronic gearing with phase adjust

� Electronic camming
� Tangent servo

� Master/slave coordination
� High speed registration

� Kinematics
� Motion superposition

� Coordination tailoring

Servo Specifications

� 486 class processor
� On-board real-time operating system supporting 12 seperate activi-

ties as well as motion control
� 4 to 16 axis of coordinated motion

� Mixed servo and stepper motor control
� 32 bit position resolution

� 48 general purpose configurable I/O
� 1 Capture signal per axis

� User Disable signal
� 2 amp enable signals per axis, one active high, the other active low

� watchdog safety system

9

1Introduction

Servo Capabilities

When configured to run a servo motor the hardware provides

� 4 MHz quadrature inputs with 3 bit filters for 4 axis, 1 MHz quadra-
ture rate for 16 axis

� high speed position capture
� high speed position compare

� +/- 10 volt command signal with 12 bit resolution

Stepper Capabilities

When configured to run a stepper motor the hardware provides

� 2 Mhz step rate for 4 axis, 500 kHz step rate for 16 axis
� configurable step pulse polarity

Timer Event

Motion Server provides motion control functions by responding to a timer
which occurs generally at 1 kHz although the frequency is programmable.
This timer event performs three major functions.

The first function is control law execution. Servo control is accomplished
with the familiar zero, pole, integrator filter used in many motion control
systems. This PID control law operates at a 1 kHz sample rate providing
comfortable closed loop system frequencies of 100 Hz and below. Stepper
motor control is accomplished by updating pulse generating electronics at a
frequency of of 1 kHz providing continuous velocity control of stepper
motors.

The second function of the timer event is motion profiling. Motion Server
is able to profile motion for up to 16 physical axes. These axes can be
combined in different arrangements to form various coordinated multi-axis
groups. Any particular axis group can perform coordinated motion along an
arbitrary path. Multiple axis groups can perform motion concurrently and
independently. The motion profiler uses a dynamic profiling technique
which permits changing profile parameters on the fly including accelera-
tion, deceleration, slew speed, and in some cases destination and motion
type. This permits motion mode "splicing" without stopping. For example a
positioning move can be changed to a jog at a new speed on the fly.

10

Instruction Manual for Motion Server and ASCII Command Interpreter

The third timer event function is multitasking. Multiple user-written
motion application programs may be resident in Motion Server. The timer
event contains a multitasker which activates and manages the operation of
these programs.

Multiple Motion Application Threads

As many as 12 separate motion application "threads" or programs (which
are distinct from motion profiles) can be running concurrently and inde-
pendently at any particular time. These programs are written in Douloi
Pascal, a dialect of Object Pascal. Programs can communicate to each other
through shared data structures. They can also access the motion control
system, communicate to I/O boards in the PC I/O expansion bus, commu-
nicate with Windows applications created by the Servo Application Work-
bench, and to the disk file system if SAW is present.

Microsoft Windows

Microsoft Windows serves as the most common development and target
environment for motion control applications using Douloi products. The
familiar interface aids both developers and users of the resulting applica-
tions reducing the developers learning curve and the operators training
time. Motion Server can be used with other operating systems through
various communication methods available. Applications programs for
downloading into Motion Server are prepared with Servo Application
Workbench or the SERVOLIB.DLL under Microsoft Windows. Once
downloaded and retained in on-board FLASH memory, these functions
can be invoked from other communication methods.

Long-Slot ISA Format

Motion Server occupies a single ISA "long" slot. The end of the Motion
Server card furthest from the mounting bracket holds the on-board 486
processor. The heat sink (and possible fan assembly for 5x86 models)
protrudes from the board further than the board-to-board spacing prevent-
ing the placement of another long-slot card immediately in front of Motion
Server, however shorter cards can fit if necessary. Host performance does
not effect Motion Server's real-time performance, however some opera-
tions are performed by the host on behalf of Motion Server when Motion
Server is interacting with SAW and sends "mail" requesting that these
operations are done on its behalf. Performance of these "non-real-time"
operations is enhanced with a faster host.

11

1Introduction

Servo Application Workbench

Servo Application Workbench (SAW) is a Windows application which
greatly simplifies the creation of multithreading motion application pro-
grams and operator control elements to direct them. Applications may
contain conventional Windows controls such as buttons and text items as
well as more specialized controls such as components available in the on-
line software catalog.

Inside Servo Application Workbench is a high level language compiler. The
compiler changes the descriptions of the motion applications into native 32
bit 486 object code which executes on Motion Server very quickly. The
compiler �knows� about the motion system, the multithreading system,
and Windows. This permits the application developer to access different
system resources in a consistent way without having to worry about how
these resources are being provided.

Servo Application Workbench allows the developer to construct motion
applications in a �clip art� fashion by pasting pre-fabricated parts and
assemblies into the application. After �screen painting� the application and
filling in the program�s behavior Servo Application Workbench compiles
the motion application programs and creates the associated Windows
application to operate them. This ability to create new real-time behavior
and download into Motion Server is constrained to the Windows environ-
ment because the language compiler is a Windows DLL. However, new
motion controller capabilities (beyond the standard command set) can be
created in SAW, downloaded into Motion Server, and remembered in
"flash" memory for use under another operating system.

Methods Of Use
Motion Server can be used in a number of ways. Certain capabilities are
available only in certain development methods. The following sections
describe resources available.

Servo Application Workbench

Servo Application Workbench is the easiest method for development of
real-time machine behavior. This behavior can be "downloaded" into the
controller and invoked from a control panel also written in SAW, from
other Windows programs, or from binary or ASCII commands.

12

Instruction Manual for Motion Server and ASCII Command Interpreter

SERVOLIB.DLL Library

Dynamic Link Libaries are a common and simple method of adding
features to any Windows language system. SERVOLIB provides procedures
and functions to control the Motion Server hardware. As well as motion
commands it is possible to use SERVOLIB to compile and download
independent Motion Server behavior to run concurrently with the Win-
dows application. Examples of "direct" access and "combined" access are
discussed in the chapter illustrating the use of SERVOLIB in the Instruc-
tion Manual for Motion Server and Servo Application Workbench. The
command reference for SERVOLIB is in the SAW help file.

ASCII Commands

ASCII commands provide a simple method of accessing the basic functions
of Motion Server including single axis and multiple axis coordinated
motion and I/O. Characters are sent through a FIFO-style hardware and
responses collected after noting that the information is available through a
status register. Example programs illustrate how to implement the hand-
shake protocol in several languages.

Binary Commands

Binary Commands provide low-level "register" access to Motion Server
without requiring that position information and command parameters be
converted into an ASCII format. Binary commands can be sent under any
operating system and language system that supports reading and writing the
PC I/O space. Example drivers are provided for C and Pascal.

The Binary Command Interpreter is itself a Servo Application Workbench
application program, stored as an auto-starting factory default application.
The interpreter can be altered, extended, and tailored to meet application
specific needs through Servo Application Workbench. Consult Douloi for
additional details.

13

2Chapter

2) ASCII Communication
Protocol
Purpose

The following chapter describes details of how to communicate to Motion
Server using the RS-232 communication channel. Command details are
provided in chapter 3.

Serial Port Configuration
Motion Server communicates through the an RS-232 serial port at 9600
baud, no parity, 1 stop bit. The UART supports a 16 bit incoming and
outgoing fifo. There is no hardware or software handshake protocol.
Connecting Motion Server to a WINTEL PC requires a "null modem" style
cable or adaptor. Note that terminal hardware may require loopback or
hardware enabling to satsify host hardware protocol.

Procedure Message Format
In general messages involve 3 letter commands. Some commands are in
the form

<procedure> <parameters> <CR>

There might be no parameters, one, or several depending on the function.
Parameters are seperated by spaces. The space between the procedure and
the first parameter is optional. Adding a space improves readability. The
command is terminated with a carriage return (ASCII 13) character.

After receiving a command, Motion Server will transmit the following
information:

<CRLF> <error number> <return value> <prompt>

The prompt is the "greater than" symbol. The error number indicates if
the command was completed successfully. A "0" indicates a success, other
numbers represent errors. If the first number is not 0, the remaining
information in the response is not valid. After the error number is a space

14

Instruction Manual for Motion Server and ASCII Command Interpreter

followed by the return value of the command. All commands have return
values. Most return values reflect controller state. Some return values
confirm information that was sent when no specific return value is associ-
ated with the command. The response terminates with the "greater than"
symbol as the default prompt.

Hooking up a terminal, or using a terminal program on the PC permits
exercising the board and viewing this transaction behavior. Typing just
the "CR" key produces a null command which returns 0 for error and 0 for
return value:

> {type "enter"}
0 0>

The command RWD (Reset Watchdog) which has no parameters can be
typed with the following response:

>RWD {enter}
0 1>

The first 0 indicates no command syntax error was encountered. The "1"
return value indicates that the command did indeed reset the watchdog.
The value "1" corresponds to "true" and "0" corresponds to false.

An example of a command which requires parameters would be the
output command, SetOutputBit (SOB). The first parameter is the bit
number and the second the desired output value.

> SOB 27 1
0 1>

Parameters are separated by spaces or commas.

Object Message Format
Another message form reflects the "object oriented" nature of the on-board
software system and has the following form:

<receiver> <verb> <parameters>

The receiver can be either a single motor axis or a coordinated group of
axes. Individual axes are presented as the "A" array numbered 1 to 16 (A is
for "Axis"). An example of an object message to an individual axis would

15

2ASCII Communication Protocol

be the MTT command, SetMotorType:

>A1 MTT SRV
0 0>

Here the "receiver" is A1, axis 1, the first "element" in the 16 xis array.
MTT is the "verb" which acts on the "receiver". SRV is a named constant.
The parameter could have been a number also.

Groups of axes are represented as the "C" array numbered 1 to 10 ("C" is
for Coordinated group). Before a group can be directed, it must be de-
scribed with the INI command. The INI command takes as parameters
the axis numbers that constitute the coordinated group. For example, a
two axis coordinated group could be associated with group 1 as follows:

>C1 INI 1 2
0 2>

Ten groups are available. Here the first group is being described as run-
ning the first and second axis on the controller board. The answer, "2"
corresponds to the dimension of the group which should be the same as
the number of parameters provided. Motion Server supports up to 6 axes
of coordinated motion.

Many commands apply to both individual axes as well as to groups. For
example, turning on the motors for axis 5 and for group 1 would be done
with the same command, just different receivers:

>A5 MTR ON
0 1>C1 MTR ON
0 1>

Performing motion requires configuring the board for the motors being
used, setting motion attributes, turning motors on, and directing their
motion. Examples at the end of the manual show from start-to-finish
examples of what's required to produce motion and interact with on-board
IO.

16

Instruction Manual for Motion Server and ASCII Command Interpreter

17

3Chapter

3) Command Reference

Command Summary

IO Operations
INB InputBit Return level of specified input
CIO ConfigureIOBitAsOutput Instructs I/O bit to behave as output signal
SOE SetOutputEnable Tell output bits to become active
SOB SetOutputBit Change state of output bit on hardware

Safety
RWD ResetWatchdog Allow tripped safety system to resume servo activity
WHT WatchdogHasTripped Returns status of watchdog system
UHD UserHasDisabled Indicates if any disable input is asserted

Axis and Coordinated Group Commands
Attributes
INI Init ... Associate axes into coordinated group
DSP........... Dispose Release axis group relationship
RSA ResetAllocation Clear all group relationships
MTT MotorType Configures motor for servo or stepper operation
ENA Enable .. Allow amplifier to power motor
MTR Motor .. Turns motor operation on and off
LIV LoopInversion Include an additional sign inversion in control law
CIV CoordinateInversion Reverse which way is regarded as the positive direction
ACL Accel .. Set acceleration rate for trapezoidal moves
DCL Decel .. deceleration rate for trapezoidal moves
SPD........... Speed ... Set speed of slew phase of trapezoidal moves
GAI Gain ... Set compensation parameter for servo
ZER Zero ... compensation parameter for servo
ITG Integrator compensation parameter to eliminate steady state error
ERL ErrorLimit Set permissible tracking error before disable occurs
PLT PositiveLimit Set boundary for movement in the positive direction
NLT.......... NegativeLimit Set boundary for movement in the negative direction
ACP ActualPosition Define current position coordinate
CAP CapturePosition Return position recorded when latch event occurred
COP CommandedPosition Set commanded position for non-trapezoidal moves
DEP DestinationPosition Return absolute coordinate of end of move
ERP ErrorPosition Return discrepency between current and ideal position
AIC ArmInputCapture Prepares axis to latch position based on input signal

18

Instruction Manual for Motion Server and ASCII Command Interpreter

AXC ArmIndexCapture..................... Prepares axis to latch position based on index signal
TRQ CommandedTorque................. Set output voltage when not servoing
PFV ProfileVelocity Return current ideal profile velocity

Motion
MVT MoveTo..................................... Move to absolute coordinate
MVB MoveBy Move to relative coordinate
BMT BeginMoveTo Start move to absolute coordinate
BMB BeginMoveBy Start move to relative coordinate
MAC MoveAlongCurve Perform coordinated multiaxis motion along curve
BMC BeginMoveAlongCurve Begin coordinated curved motion
AMT AppendMoveTo Add absolute vector segment to curve description
AMB AppendMoveBy Add vector segment to curve relative to last segment
ARC AppendArc Add circular or helical arc to continuous path curve
CLR Clear .. Erase any established motion curve info
LNK.......... LinkToBuffer Assocate curve buffer with axis group
JOG Jog .. Move indefintely at constant speed
STP Stop .. Gently stops any motion that may be in progress
BST BeginStop Begins to stop but immediately does next instruction
ABT Abort .. Suddenly aborts any motion that my be in progress
CHT CaptureHasTripped Indicate if latch event has occurred
MIF MoveIsFinished Return true if move has finished

User Task Control
BUT BeginUserTask Spawn independent application behavior in controller
AUT AbortUserTask Terminate an independent behavior in controller
SUT ScheduleUserTask Spawns independent period application behavior
PUT SuspendUserTask Cause task in controller to become inactive
RUT ResumeUserTask Cause suspended activity to become active again
UTP UserTaskPresent Indicates if particular task is currently present in controller

User Variable Control
USB UserBoolean Manipulate user boolean in controller
USL UserLongint Manipulate user longint in controller
USS UserSingle Manipulate user single in controller

19

3Command Reference

ABT (Abort)

Syntax
<axis or group> ABT

Description
Abort immediately and abruptly stops motion without a controlled decel. Abort is generally for
emergency use. Note that an abort at high speeds will most likely cause a servo tracking error
resulting in the servos shutting down. This problem can be solved by increasing the error limit
with SetErrorLimit or using the dms_Stop command instead. The return value for abort is the
group dimension.

Examples
A1 ABT
C4 ABT

See Also
BeginStop
Stop

ACL (Accel)

Syntax
<axis or group> ACL <value>

Description
SetAccel is used to set the acceleration of a profiled move in counts per second squared. If the
receiver is a T1Axis the acceleration is for the movement of that motor when operating alone. If
the receiver is an axis group , for example a T2Axis or T4Axis, the acceleration applies to the
coordinated motion profile of the group. SetDecel may be used to independently set the
deceleration of the TNAxis.

Accel sets and returns the current setting of the acceleration that will be used by this axis group
during trapezoidal moves. The units are in counts per second squared.

20

Instruction Manual for Motion Server and ASCII Command Interpreter

Examples
A1 ACL 2000 ; sets acceleration to 2000 counts/sec^2
C2 ACL 3000 ; sets vector acceleration of group
A14 ACL ; returns current accel without assigning

See Also
TNAxis.Decel
TNAxis.Speed
TNAxis.SetAccel
TNAxis.SetDecel
TNAxis.SetSpeed

ACP (ActualPosition)

Syntax
<axis> ACP <value>

Description
ActualPosition sets and returns the current position coordinate of the T1Axis receiver. This is often
used when producing plots of the dynamic response of the motor. Note that this may well be
different from the CommandedPosition of the motor, ie the theoretical position of where the
motor should be. In some cases it may be more desirable to use the CommandedPosition rather
than the Actual position. The value returned is in units of counts.

Examples
A1 ACP 0 ; Sets axis 1 actual position to 0
A1 ACP ; retreives actual position of axis 1

See Also
CommandedPosition

21

3Command Reference

AIC (ArmInputCapture)

Syntax
<axis> AIC

Description
ArmInputCapture is used to setup the system to respond to an input pulse that is anticipated.
ArmInputCapture resets the capture latches for the axis associated with the TNAxis machine.
When CaptureHasTripped the CapturePosition information is valid and can be used by the motion
application. Each axis has a specific input used for high speed capture. The return value contains
the axis number armed.

Examples
A1 AIC

...

A14 AIC

See Also
Capture Inputs
ArmInputCapture
Capture
Capture Inputs
CaptureHasTripped
CapturePosition

AMB (AppendMoveBy)

Syntax
<group> AMB <value> <value> ... <value>

Description
AppendMoveBy adds an additional descriptive point, expressed in relative coordinates, to the end of
a curve description. The number of parameters corresponds to the dimension of the TNAxis.

22

Instruction Manual for Motion Server and ASCII Command Interpreter

Examples
C1 INI 1 2
C1 LNK
C1 AMB 1000 2000
C1 AMB 2000 2000
C1 MAC

C2 INI 5 6 7 8
C2 LNK
C2 AMB 1000 1000 1000 1000
C2 AMB 1000 1500 1500 2000
C2 MAC

See Also
Curved Trajectories
TNAxis.MoveAlongCurve
TNAxis.AppendMoveTo
TNAxis.AppendMoveToVector
TNAxis.AppendMoveByVector

AMT (AppendMoveTo)

Syntax
<group> AMT <value> <value> ... <value>

Description
AppendMoveTo adds an additional descriptive point, expressed in absolute coordinates, to the end
of a curve description. The number of parameters corresponds to the dimension of the TNAxis.

Examples
C1 INI 1 2
C1 LNK
C1 AMT 1000 2000
C1 AMT 2000 2000
C1 MAC

C2 INI 5 6 7 8
C2 LNK
C2 AMT 1000 1000 1000 1000
C2 AMT 1000 1500 1500 2000
C2 MAC

23

3Command Reference

See Also
Curved Trajectories
TNAxis.MoveAlongCurve
TNAxis.AppendMoveBy
TNAxis.AppendMoveToVector
TNAxis.AppendMoveByVector

ARC (AppendArc)

Syntax
<group> ARC <radius> <initial angle> <delta angle> <deltaz>

Description
AppendArc adds a circular segment to the continuous path being constructed. The first parameter
is the radius of the arc. The InitialAngle indicates, in degrees, the tangent angle of the beginning of
the arc. The DeltaAngle indicates how many degrees of rotation should occur. Note that
DeltaAngle can indicate more than 360 degrees of rotation. Negative delta angles indicate curves to
the right. Positive delta angles indicates curves to the left. Angles are measured with the X pointing
in direction 0 and Y pointing in direction 90.

Examples
The following commands illustrate how to produce a continuous path:

C1 INI 1 2
C1 LNK
C1 AMB 1000 0
C1 ARC 1000 0 90
C1 AMB 0 1000
C1 BMC

SeeAlso
Curved Trajectories
TNAxis.MoveAlongCurve
TNAxis.AppendMoveTo
TNAxis.AppendMoveToVector
TNAxis.AppendMoveByVector

24

Instruction Manual for Motion Server and ASCII Command Interpreter

AUT (AbortUserTask)

Syntax
AUT <task number>

Description
AbortUserTask causes an application task in the controller to begin cease executing as independent
thread. Aborting a task which is not currently running is not considered an error. AbortUserTask
really means "insure that this indicated task is not active". Not finding the task active indicates it is
inactive already.

Examples
AUT 1
AUT 10

See Also
dms_BeginUserTask
dms_ScheduleUserTask
dms_UserTaskPresent
dms_SuspendUserTask
dms_ResumeUserTask

AXC (ArmIndexCapture)

Syntax
<axis> AXC

Description
ArmIndexCapture is used to setup the system to respond to an index pulse that is anticipated.
ArmIndexCapture resets the capture latches for the axis associated with the TNAxis machine.
When CaptureHasTripped the CapturePosition information is valid and can be used by the motion
application. The return value contains the axis number assigned.

Examples
A1 AXC
A15 AXC

25

3Command Reference

See Also
ArmInputCapture
Capture
CaptureHasTripped
CapturePosition

BMB (BeginMoveBy)

Syntax
<axis or group> BMB <value> <value> ... <value>

Description
BeginMoveBy starts relative coordinated move by the specified position deltas but does not wait for
the move to finish. In actual use the "N" in TNAxisBeginMoveBy is replaced by the dimension of
the controlled group. For example, a 2 axis call would be T2AxisBeginMoveBy. The method
requires as many parameters as the dimension of the receiver axis group, ie a 2 axis group requires 2
parameters, a 4 axis group requires 4 parameters. The motion is performed with a trapezoidal
velocity profile based on parameters set with the SetAccel , SetDecel , and SetSpeed methods.
These parameters apply to the vector path motion of the coordinated group rather than to any
particular axis. BeginMoveBy returns immediatly and does not wait for the motion to finish. For
cases where it is important to �blocking� program execution until the end of the move use MoveBy
instead of BeginMoveBy. Use MoveHasCompleted to determine when a move started with
BeginMoveBy has finished.

Group Numbers required to perform the call is provided by the TNInit functions

Errors
BeginMoveBy will escape if while in motion the resulting destination specified is �behind� the
vector path position or if the destination is so close that the axis group cannot accomplish the move
at the specified decel rate. In these cases the group will emit a MotionOverrunEscapeCode and
come to a stop.

Examples
C2 INI 1 2 3
C2 MTR ON
C2 BMB 1000 2000 3000

26

Instruction Manual for Motion Server and ASCII Command Interpreter

SeeAlso
TNAxis.SetAccel
TNAxis.SetDecel
TNAxis.SetSpeed
TNAxis.MoveIsFinished
TNAxis.MoveBy
TNAxis.MoveTo
TNAxis.BeginMoveTo
MotionOverrunEscapeCode

BMC (BeginMoveAlongCurve)

Syntax
<axis group> BMC

Description
BeginMoveAlongCurve performs continuous path motion over an arbitrary, multiaxis curve
description which was previously setup. This routine is not implemented by a T1Axis single axis.
Program execution immediately continues after the motion has started. The return value contains
the dimension of the group being controlled.

Examples
C1 BMC
C5 BMC

SeeAlso
Curved Trajectories
TNAxis.MoveAlongCurve
TNAxis.MoveIsFinished

27

3Command Reference

BMT (BeginMoveTo)

Syntax
<axis or group> BMT <value> <value> ...<value>

Description
BeginMoveTo starts an absolute coordinated move to the specified absolute position destinations
but does not wait for the move to finish. The "N" in TNAxisBeginMoveTo is replaced by the
dimension of the group being controlled, for example T2AxisBeginMoveTo for a 2 axis group. The
method requires as many parameters as the dimension of the receiver axis group, ie a 2 axis group
requires 2 parameters, a 4 axis group requires 4 parameters. The motion is performed with a
trapezoidal velocity profile based on parameters set with the SetAccel , SetDecel , and SetSpeed
methods. These parameters apply to the vector path motion of the coordinated group rather than to
any particular axis for multidimensional axis groups. BeginMoveTo returns immediatly and does
not wait for the motion to finish. For cases where it is important to �block� program execution
until the end of the move use MoveTo instead of BeginMoveTo. Use MoveHasCompleted to
determine when a move started with BeginMoveTo has finished.

Group numbers required for this routine are provided by the TNInit functions.

Errors
BeginMoveTo will escape if while in motion the destination specified is �behind� the vector path
position or if the destination is so close that the receiver cannot accomplish the move at the
specified decel rate. In these cases an escape will occur with MotionOverrunEscapeCode and the
receiver will stop.

Examples
C4 INI 1 2
C4 MTR ON
C4 BMT 100 100

SeeAlso
TNAxis.SetAccel
TNAxis.SetDecel
TNAxis.SetSpeed
TNAxis.MoveIsFinished
TNAxis.MoveBy
TNAxis.MoveTo
TNAxis.BeginMoveTo
MotionOverrunEscapeCode

28

Instruction Manual for Motion Server and ASCII Command Interpreter

BST (BeginStop)

Syntax
<axis or group> BST

Description
BeginStop directs the axis group to slow down at the specified decel rate and stop motion. A
TNAxis group will remain coordinated during the stop. The calling program will not wait until
after the stop has finished before continuing but will immediately execute the next statement. The
return value contains the group dimension being stopped.

Examples
A1 BST
C3 BST

See Also
TNAxis.Stop
TNAxis.Abort

BUT (BeginUserTask)

Syntax
BUT <task number>

Description
BeginUserTask causes an application task in the controller to begin executing as an independent
thread. Tasks are saved in controller FLASH memory through the use of the SAVE_APP catalog
component. It is necessary to "connect" application tasks to user task numbers through an
assignment procedure for access through the binary command interpreter. Consult the chapter on
"Using Flash Memory" for more information. The return value contains the task number provided.

Examples
BUT 1

...

BUT 10

29

3Command Reference

See Also
dms_AbortUserTask
dms_ScheduleUserTask
dms_UserTaskPresent
dms_SuspendUserTask
dms_ResumeUserTask

CAP (CapturePosition)

Syntax
<axis> CAP

Description
CapturePosition returns the position the axis experienced the capture event, either an index pulse
of an input, which was anticipated using the ArmIndexCapture or ArmInputCapture instructions.
The CapturePosition is only valid if CaptureHasTripped.

Examples
A1 CAP
SAY A5 CAP

See Also
ArmIndexCapture
ArmInputCapture
Capture
Capture Inputs
CaptureHas

30

Instruction Manual for Motion Server and ASCII Command Interpreter

CAT (CaptureHasTripped)

Syntax
<axis> CAT

Returns
1 = Capture has tripped, 0 = Still waiting for capture to trip

Description
CaptureHasTripped returns true if the index or input event, configure by ArmIndexCapture or
ArmInputCapture, has occurred. If CaptureHasTripped then CapturePosition is valid and contains
the position where the event occurred.

Examples
A1 CAT
A4 CAT

See Also
TNAxis.ArmInputCapture
TNAxis.ArmIndexCapture
Tripped

CIO (ConfigureIOBitAsOutput)

Syntax
CIO <bit number> <IsOut>

Description
Motion Server I/O can be configured as inputs or outputs in 4-bit nibble sized groups. Groups are
indicated in the connector diagram later in this document. After reset I/O defaults to inputs with
4.7k pullups to prevent asserting an active output signal. Nibble-groups can become outputs by
using this command with the Bit parameter being the bit number of any bit in the group, and the
IsOut parameter being set to "true". An output group can become an input group by indicating
IsOut as false.

31

3Command Reference

Examples
CIO 1,1 ;configure bit 1 (and 2,3,4) as output
CIO 5,0 ;configure bit 5 (and 6,7,8) as input

SeeAlso
dms_SetOutputBit
dms_SetOutputEnable

CIV (SetCoordinateInversion)

Syntax
<axis> CIV <on or off>

Description
SetCoordinateInversion is used to change the direction a motor regards as positive. Axis direction is
influenced by mechanical transmission reversals, encoder phase definition, and wiring conventions.
If the motor does not move in the direction regarded as positive this procedure may be used to
invert the direction by calling with a parameter value of true. Using the predefined booleans On
and Off may improve the readability of the code. A better design option is to change the wiring,
most likely of the A and B channels of the encoder so that the axis moves in the correct direction
from the default values rather than having to be �setup� by this procedure call. If that wiring is
inconvenient this procedure may be the simplest option. Changing the encoder wires also requires
changing the motor wires so as to preserve the loop sign. Note that changing the wires of the
motor alone will not have the desired effect but will instead cause the servo loop to go unstable.

This command operates in an incremental manner by inverting the coordinate frame about the
current actual position rather than 0. The best time to use this command is during initial setup
before homing has been performed. This is not intended to be used during motion.

Examples
A1 CIV ON
A2 CIV OFF

See Also
T1Axis.SetLoopInversion

32

Instruction Manual for Motion Server and ASCII Command Interpreter

CLR (Clear)

Syntax
<group> CLR

Returns
Group dimension

Description
CLR removes any previous curve information and prepares the TNAxis to receive a new curve
description with Append commands..

Examples
C2 CLR
C5 CLR

SeeAlso
Curved Trajectories
TNAxis.MoveAlongCurve
TNAxis.AppendMoveBy
TNAxis.AppendMoveTo
TNAxis.AppendMoveToVector
TNAxis.AppendMoveBy
TNAxis.AppendMoveByVector

COP (CommandedPosition)

Syntax
<axis> COP <value>

Returns
Current commanded position

33

3Command Reference

Description
CommandedPosition returns the theoretical position of the motor, i.e. the desired position of the
motor. During the course of a profiled motion this number will smoothly change to represent the
trajectory of the motor. Actual motor trajectory will differ from this theoretical expectation due to
system dynamics and power limits realized in physical, real-world machines. The commanded
position only exists when the motor is servoing. If the servo is not active the CommandedPosition
is a meaningless number. For multidimensional axis groups the commanded position is the vector
path length into the move or curve relative to the beginning of the curve. This can be used to
perform events at particular positions along a multidimensional trajectory.

Examples
A1 COP 300

SAY A1 COP

SAY C3 COP

See Also
T1Axis.ActualPosition
TNAxis.GetActualPositionVector
TNAxis.GetCommandedPositionVector

DCL (Decel)

Syntax
<axis or group> DCL <value>

Description
Decel returns the current setting of the deceleration that will be used by this axis group during
trapezoidal moves. The units are in counts per second squared.

Examples
A1 DCL 10000
C2 DCL 20000
A1 DCL
C2 DCL

34

Instruction Manual for Motion Server and ASCII Command Interpreter

SeeAlso
TNAxis.Accel
TNAxis.Speed
TNAxis.SetAccel
TNAxis.SetDecel
TNAxis.SetSpeed

DEP (DestinationPosition)

Syntax
<axis or group> DEP

Description
DestinationPosition returns the absolute coordinate of where a move will finish. This can be used
to calculate the distance remaining in a move, move often used to overlap motion and reduce cycle
time.

Examples
SAY A2 DEP
SAY C5 DEP

See Also
CommandedPosition
ActualPosition

DSP (Dispose)

Syntax
<group> DSP

Description
The Motion Server command set is designed to support multiple client programs. Coordinated
motion is described by using GroupNumbers provided by TNAxisInit routines. When a client
program is done and exiting the client needs to tell Motion Server that it is finished with the
resources that were allocated so that another program can use them. This is done with

35

3Command Reference

dms_TNAxisDispose. dms_TNAxisDispose is analagous to releasing memory after use so as to
prevent a "memory leak". If dms_TNAxisDispose is not used, an "axis leak" will occur and
eventually Motion Server will indicate that there are no more axis groups available for use.

Example
C4 DSP

ENA (Enable)

Syntax
<axis or group> ENA <on or off>

Description
Enable returns true (non-0) if all of the axis in the axis group are enabled. This should generally
follow the state requested by SetServo, however servo tracking error can cause one or more axis to
automatically shutdown. When a servo is turned off, it�s enabled is also turned off to shutdown the
amplifier. You can re-enable an amplifier without requesting servo activity by using SetEnable

Examples
A1 ENA ON
C2 ENA OFF
A1 ENA
C2 ENA

See Also
Servo States
SetEnable
SetServo
ServoIsOn

36

Instruction Manual for Motion Server and ASCII Command Interpreter

ERL (SetErrorLimit)

Syntax
<axis> ELT <value>

Description
SetErrorLimit is used to describe how far a physical axis �s actual position can lag behind the
commanded position without that lagging being considered an error. Ideally the motor�s actual
position exactly follows the commanded position however system dynamics and transient response
of the motion control law means that in general this idealistic case is not achieved for arbitrary
profiles although it can be closely achieved for non-accelerating profiles. Systems which have high
accelerations and decelerations are also likely to incur following error during those times if the
power system saturates. If the difference between the actual position and commanded positions
exceeds the error limit the axis will perform a TNAxis.SetServo(Off) ;

The error limit is always being checked. Set the limit to be a large value if the SetServo(Off)
behavior is not desired.

Example
A1 ERL 50
A2 ERL 25

See Also
TNAxis.SetMotor
TNAxis.MotorIsOn

ERP (ErrorPosition)

Syntax
<axis> ERP

Description
ErrorPosition returns the difference between where the servo is commanded to be and its actual
position. This difference is monitored. If it is found to be greater than the error limit, the servo is
turned off.

37

3Command Reference

Examples
A1 ERP ; returns axis 1 error position

See Also
CommandedPosition
ActualPosition

GAI (Gain)

Syntax
<axis> GAI <value>

Description
Motion Server implements PID control. This function returns the current value of the control law
gain, one of the primary compensation parameters.

Examples
A1 GAI 32 ; sets axis 1 gain to 32
A2 GAI 40 ; sets axis 2 gain to 40
A1 GAI ; returns axis 1 gain value

See Also
Integrator
SetGain
SetIntegrator
SetZero
Zero

38

Instruction Manual for Motion Server and ASCII Command Interpreter

INB (InputBit)

Syntax
INB <bit number>

Description
InputBit returns true if the input level is high and false if the level is low. Values for bit number are
1 through 48. Asking for the input value of a bit configured as an output returns the current level
of the output.

Errors
If a bit number is requested beyond the range for the system then a
ParameterOutOfRangeEscapeCode occurs.

Examples
INB 4

See Also
ConfigureIOBit
SetOutputBit

INI (Init)

Syntax
<group> INI <axis number> <axis number> ...<axis number>

Description
TNAxisInit is used to associate axes into a coordinated group and returns a Group Number to
reference the group in the future. In actual use, the "N" in TNAxisInit is replaced by the dimension
of the group being constructed, i.e. T2AxisInit for a 2 axis group or T6AxisInit for a 6 axis group. In
coordinated motion commands, the group number is the "handle" that refers to this particular axis
association. The axis are specified with their axis numbers ranging from 1 to 16. The routine
requiers as many axis parameters as dimension of the group being constructed. The order the axes
are indicated here becomes the order of parameters used to describe coordinated motion. The first
axis listed here receives the first coordinate number in motion commands. Coordinated motion can
only be performed on groups that have been initialized.

39

3Command Reference

Example
C4 INI 1 2 ; creates 2 axis coordinated group
C5 INI 3 4 5 6 7 ; creates 5 axis coordinated group

ITG (Integrator)

Syntax
<axis> ITG <value>

Description
Motion Server implements PID control. This function returns the current value of the control law
integrator, one of the primary compensation parameters.

Examples
A1 ITG 10 ; sets integrator for axis 1 to value 10
A2 ITG 5; sets integrator for axis 2 to 5
A1 ITG ; returns current value of axis 1 integrator

See Also
Gain
Zero
Integrator
SetGain
SetZero
SetIntegrator

JOG (Jog)

Syntax
<axis> JOG <speed>

Description
Jog directs an axis to move at the specified speed indefinitely. if the magnitude of aSpeed is smaller
than the magnitude of the current speed the axis will slow down at the decel rate. If the magnitude
is greater it will speed up at the accel rate. It is possible to jog in the opposite direction as the current

40

Instruction Manual for Motion Server and ASCII Command Interpreter

speed. It is possible to jog at 0 speed. Jog may supersede a move, changing it into a continuous
motion.

Although it is possible to use jog to produce movement when searching for home switches or other
input events, it is generally a better idea to move a distance which should include the event so that
the behavior of the machine if the event is not found is to stop rather than to travel indefinitely.

Jogging is NOT protected by positive and negative limits. Jogging, by it's nature, is a continuous
move. To realize jogging velocity to the edge of a machine movement, perform a move to the
positive or negative limit at the required jog speed.

Examples
A1 MTT STE
A1 MTR ON ; turn the motor on
A1 JOG 2000 ; accelerate and move at continuous speed
A1 JOG ; same as A1 SPD, returns current speed

See Also
TNAxis.Stop

LIV (LoopInversion)

Syntax
<axis> LIV <on or off>

Description
SetLoopInversion is used to add an additional sign change in the feedback loop so as to change the
total loop sign. This instruction is provided to compensate for encoder wiring or motor wiring
which is not providing the correct feedback sense. A better response to the problem of unstable
loop sign is to change the wiring of the motor leads (invert loop sign) or encoder A and B channels
(invert coordinate frame and sign) rather than use this instruction since forgetting this instruction
in a future application causes the motor to be unstable. AxisNumber must be in the range 1 to 16.
Group Numbers are not allowed for this routine.

Examples
A1 LIV ON
A2 LIV OFF

41

3Command Reference

See Also
T1Axis.SetErrorLimit
T1Axis.SetCoordinateInversion

LNK (LinkToBuffer)

Syntax
<axis group> LNK

Description
Motion Server supports continuous path motion. Curves are described by appending vectors and
arcs to a list associated with the axis group that will perform the curve. To indicate to an axis group
that space should be made available for this list use the dms_LinkToBuffer command. There are 2
lists in the standard binary command interpreter. Each list can support up to 500 elements and up
to a T6Axis group. If both of these buffers have been used the error code will be set to
be_OutOfCurveBuffers. If this occurs the most likely explanation is that dms_TNAxisRelease was
not used to deallocate the buffers. Refer to this command, or use the dms_ResetAllocation
command to provide a "clean slate" on startup.

Example

The following commands illustrate how to produce a continuous path:

C1 INI 1 2
C1 LNK
C1 AMB 1000 0
C1 ARC 1000 0 90
C1 AMB 0 1000
C1 BMC

SeeAlso
dms_T2AxisAppendArc
dms_T3AxisAppendArc
dms_T2AxisAppendMoveBy
dms_T2AxisAppendMoveTo
dms_ReleaseAllocation
dms_TNAxisDispose

42

Instruction Manual for Motion Server and ASCII Command Interpreter

MAC (MoveAlongCurve)

Syntax
<group> MAC

Description
MoveAlongCurve performs continuous path motion over an arbitrary, multiaxis curve description
which was previously setup. This routine is not implemented by a T1Axis single axis. Program
execution does not continue past MoveAlongCurve until the curve has been completed.

Examples
C2 MAC

SeeAlso
Curved Trajectories
TNAxis.BeginMoveAlongCurve
TNAxis.MoveIsFinished

MIF (MoveIsFinished)

Syntax
<axis or group> MIF

Description
MoveIsFinished indicates if the TNAxis is currently moving or if the move has completed. The
DLL function returns 0 to represent false and non-0 to represent true. This would normally be
used after starting motion with a procedure that had a name starting with BeginMove......

Because of the multitasking options with Motion Server and SI-3000 it is sometimes more
convenient to seperate functions into two parts, a motion part which uses �synchronous� motion
commands that start with Move, and another part which performs the �background� activity, and
to have both functions running at the same time.

43

3Command Reference

Example
Imagine you would like to move a fixed distance with the expectation of hitting a switch along the
way. The following routine would perform this check:
...
A1 BMB 20000
...

A1 MIF
...

SeeAlso
BeginMoveTo
BeginMoveBy
TNAxis.BeginMoveToVector
TNAxis.BeginMoveByVector
TNAxis.BeginMoveAlongCurve

MTR (Motor)

Syntax
<axis> MTR <ON or OFF>

Description
MTR is used to turn motor activity on and off for all the axis in the TNAxis. Called with a
parameter value of true enables the amplifier lines. The motor servos to the current location (if
configured for servo). When called with a parameter value of false the amplifier lines are disabled,
the motor command is set to 0 volts (if configured for servo) and no further motor activity occurs.
Readability of the program is improved by using the predefined boolean constants On and Off .
SetMotor is an alias for the outdated SetServo routine, (retained for backward comaptibility) to
acknowledge both stepper and servo motor capability.

Example
A1 MTR ON ; sets axis 1 motor on
C3 MTR ON ; sets all motors in group on
A2 MTR ; returns 1 if on, 0 if off

44

Instruction Manual for Motion Server and ASCII Command Interpreter

Escapes
SetMotor(On) will generate a WatchdogFailedToResetEscapeCode if the WatchdogHasTripped .

See Also
Enable

MTT (MotorType)

Syntax
<axis> MTT <SRV or STE>

Description
SetMotorType is used to configure a particular axis to run a servo motor or a stepper motor. The
AxisNumber parameter must be in the range 1 to 16. Group Numbers are not allowed for this
parameter. If the configuration is for stepper, it is also possible to indicate whether the step pulse
goes high to indicate a step or goes low.This information is conveyed through the bit mask
parameter. The following constants are included to aid in specifying the motor configuration:

(ServoMotor) or
(StepperMotor + (HighStepPulse or LowStepPulse))

When setting an axis for use as a servo motor, just use ServoMotor as the parameter. When
specifying a StepperMotor the parameter is StepperMotor with a pulse width contant and a pulse
polarity constant added to it.

Example
A1 MTT SRV
A2 MTT STE
A1 MTTPFV (ProfileVelocity)

Syntax
<axis or group> PFV <value>

Description
ProfileVelocity returns the current commanded speed (signed magnitude) that is being used to
generate the trapezoidal motion trajectory. During slew, the magnitude of ProfileVelocity is the
same as Speed. During accel and decel the profile velocity varies according to the point in the
profile.

45

3Command Reference

Examples
A1 PFV 1000 ; sets the current profile velocity
A1 PFV ; returns the current profile velocity

See Also
TNAxis.CommandedPosition
T1Axis.ActualPosition

MVB (MoveBy)

Syntax
<axis or group> MVB <value> <value> ... <value>

Description
TNAxisMoveBy performs a relative coordinated move by the specified position deltas. In actual
use, the "N" in TNAxis... is replaced by the dimension of the group being directed, i.e.
T3AxisMoveBy for a 3 axis group. The method requires as many parameters as the dimension of
the receiver axis group, ie a 2 axis group requires 2 parameters, a 4 axis group requires 4 parameters.
The motion is performed with a trapezoidal velocity profile based on parameters set with the
SetAccel , SetDecel , and SetSpeed methods. These parameters apply to the vector path motion of
the coordinated group rather than to any particular axis. MoveBy does not return until the motion
has been accomplished. �Blocking� program execution until the end of the move may be helpful
for synchronizing the next event, ie don�t drill the hole until you get to the destination. Some
appllications need to continue execution even though the destination has not yet been achieved.
For these cases use BeginMoveBy which starts the move and immediately returns to continue with
the next instruction.

Group Numbers are provided by TNAxisInit routines.

Errors
MoveBy will escape if while in motion the new destination specified is �behind� the vector path
position or if the destination is so close that the axis group cannot accomplish the move at the
specified decel rate. In these cases the group will emit a MotionOverrunEscapeCode and come to a
stop.

Example
C2 INI 1 2 3 4
C2 MVB 100 100 200 200

46

Instruction Manual for Motion Server and ASCII Command Interpreter

SeeAlso
TNAxis.SetAccel
TNAxis.SetDecel
TNAxis.SetSpeed
TNAxis.MoveTo
MotionOverrunEscapeCode

MVT (MoveTo)

Syntax
<axis or group> MVT <value> <value> ... <value>

Description
TNAxisMoveTo performs an absolute coordinated move to the specified destination. In actual use,
the "N" in TNAxis is replaced by the dimension of the group, i.e. T2AxisMoveTo. The number of
parameters provided is the same as the dimension of the axis group, ie a 2 axis group requires 2
parameters, a 4 axis group requires 4 parameters. The motion is performed with a trapezoidal
velocity profile based on parameters set with the SetAccel , SetDecel , and SetSpeed methods.
These parameters apply to the vector path motion of the coordinated group rather than to any
particular axis. TNAxisMoveTo does not return until the motion has been accomplished.
�Blocking� program execution until the end of the move may be helpful for synchronizing the next
event, ie don�t drill the hole until you get to the destination. Some appllications need to continue
execution even though the destination has not yet been achieved. For these cases use
TNAxisBeginMoveTo which starts the move and immediately returns to continue with the next
instruction.

Errors
MoveTo will escape if while in motion the destination specified is �behind� the vector path
position or if the destination is so close that the axis group cannot accomplish the move at the
specified decel rate. In these cases the group will emit a MotionOverrunEscapeCode and come to a
stop.

Example
C5 INI 1 2 3
C5 MVT 1000 2000 3000

47

3Command Reference

SeeAlso
TNAxis.SetAccel
TNAxis.SetDecel
TNAxis.SetSpeed
MotionOverrunEscapeCode
TNAxis.MoveBy

NLT (SetNegativeLimit)

Syntax
<axis> NLT <value>

Description
SetNegativeLimit establishes a negative-direction boundary for movement. If the axis is asked to
attempt a move beyond this boundary, a PositionLimitEscapeCode will occur and the axis will stop.

Examples
A1 NLT -5000
A1 NLT

See Also
PositiveLimit

PLT (PositiveLimit)

Syntax
<axis> PLT <value>

Description
SetPositiveLimit establishes a positive-direction boundary for movement. If the axis is asked to
attempt a move beyond this boundary, a PositionLimitEscapeCode will occur and the axis will stop.

48

Instruction Manual for Motion Server and ASCII Command Interpreter

Examples
A1 PLT 20000

See Also
SetNegativeLimit

PUT (SuspendUserTask)

Syntax
PUT <task number>

Description
SuspendUserTask causes a task in the controller to to be placed "on hold". Stack information and
task residency is kept, however the task does not perform any operations. ResumeUserTask is
required to allow the task to run again.

Examples
PUT 1

...

AUT 10

See Also
dms_BeginUserTask
dms_ScheduleUserTask

49

3Command Reference

RSA (ResetAllocation)

Syntax
RSA

Description
Motion Server is designed to provide motion services to several clients at one time. In the course of
providing these services resources are allocated through the dms_T2AxisInit..dms_T6AxisInit
commands and through the dms_LinkToBuffer routine. If a client program terminates and does
not dispose of these resources with the dms_TNAxisDispose command, eventually the resources
will be consumed and Motion Server will report errors. The procedure dms_ResetAllocation is
used to provide a "clean slate" for Motion Server resources. In a multiple client situation,
dms_ResetAllocation should not be used as it would "pull the resources out from under" another
client program which may be active. If you are developing an application that only involves a single
client, dms_ResetAllocation can be used in the startup code to insure a full set of resources is
available.

Example
RSA

See Also
dms_TNAxisDispose

RSW (ResetWatchdog)

Syntax
RSW

Description
The motion system operates under the supervision of a watchdog system. If for any reason the
processor should be delayed in responding to the motion system�s timer event the watchdog system
will shutdown the power amplifiers to insure that no undesired motion occurs. ResetWatchdog
allows servo activity to occur again.

Errors
 If ResetWatchdog discovers that the watchdog did not reset a WatchdogFailedToResetEscapeCode
will occur.

50

Instruction Manual for Motion Server and ASCII Command Interpreter

Example
RSW

See Also
WatchdogHasTripped

RUT (ResumeUserTask)

Syntax
RUT <task number>

Description
ResumeUserTask is used to awaken a task on the Motion Server controller that has been
suspended with the PUT command.

Examples
RUT 1

...

RUT 10

See Also
dms_BeginUserTask
dms_ScheduleUserTask

51

3Command Reference

SOB (SetOutputBit)

Syntax
SOB <bit number> <ON or OFF>

Description
SetOutputBit is used to set output bits to a prescribed level. BitNumber should be in the range of 1
to 48. Value should be a boolean parameter. The predefined constants On and Off can help
improve readability of the program. These bits will only take effect if SetOutputEnable(On) has
been used since a hardware reset.

Errors
If the bit number is outside of the allowable range for the system configuraiton a
ParameterOutOfRangeEscapeCode will occur.

Examples
SOB 1 ON
SOB 2 OFF

SOE (SetOutputEnable)

Syntax
SOE <ON or OFF>

Description
After a hardware reset, the general I/O is configured as inputs and the output drives are tristated.
Pullups on the signals will assert a �soft� high level as the default signal. Digital outputs on the axis
connector will also be tristated after reset. SetOutputEnable activates the outputs (on signals
configured to be outputs) so that SetOutputBit works. SetOutputEnable(Off) tristates the outputs
in the same manner that a hardware reset would. The DLL call will escape if there are insufficient
tasks available to perform the operation.

Examples
SOE ON
SOE OFF

52

Instruction Manual for Motion Server and ASCII Command Interpreter

See Also
SetOutputEnable
ConfigureIOBit

SPD (Speed)

Syntax
<axis or group> SPD <value>

Description
SetSpeed establishes the slew speed to be used during axis movement. aSpeed is in units of counts/
second. Values in the range of 80,000 are brisk. Values in the range of 1000 are slow. The speed of a
move may be changed on the fly at any point in a move and take immediate effect if the motion is
in the slew phase. For single axis machines SetSpeed effects the speed of the axis. For multiaxis
groups SetSpeed effects the vector speeed of the group.

Examples
A1 SPD 1000

C2 SPD 20000

SeeAlso
TNAxis.SetAccel
TNAxis.SetDecel
TNAxis.MoveTo
TNAxis.MoveBy
TNAxis.BeginMoveTo
TNAxis.BeginMoveBy

53

3Command Reference

STP (Stop)

Syntax
<axis or group> STP

Description
Stop directs the axis group to slow down at the specified decel rate and stop motion. A TNAxis
group will remain coordinated during the stop. The calling program will wait until after the stop
has finished before continuing.

Examples
A1 STP
C2 STP

SeeAlso
BeginStop
Abort

SUT (ScheduleUserTask)

Syntax
AUT <task number> <invocation period>

Description
ScheduleUserTask causes an application task in the controller to begin executing as an independent
thread on a period basis. The first parameter is the user task number. The second parameter is how
many sample periods should occur between invocations of the task.

Examples
SUT 1 20

...

SUT 10 100

54

Instruction Manual for Motion Server and ASCII Command Interpreter

See Also
dms_BeginUserTask
dms_ScheduleUserTask

TRQ (CommandedTorque)

Syntax
<axis> TRQ <value>

Returns
Current commanded torque value, +/- 2047 representing +/- 10 volts

Description
CommandedTorque returns the current amount of torque the servo controller is requesting for
the receiving axis. This information is returned as an integer and is in the range of MaxTorque to
MinTorque. This function can be used to determine if the axis is continually applying torque to a
load or undergoing saturation, (ie constantly requesting the maximum or minimum torque).

Examples
A1 TRQ 500
SAY A1 TRQ

See Also
T1Axis.SetCommandedTorque

UHD (UserHasDisabled)

Syntax
UHD

Description
If the User Disable input is not held low this function returns 1 indicating that the user is
attempting to disable the system, otherwise it returns a 0

55

3Command Reference

Example
UHD

See Also
ResetWatchdog
WatchdogHasTripped

USB (User Boolean)

Syntax
USB <value>

Description
UserBoolean writes and reads information from an array of boolean variables. Information may be
placed into this array and read from on-board user tasks allowing data to flow between the host and
Motion Server as parameters and return results for user task operations.

Examples
USB 10 0 ; sets user boolean 10 to false (0)
USB 11 1 ; sets user boolean 11 to true (1)
USB 10 ; retrieve the value of user boolean 10

See Also
USB
USB
BUT
AUT

56

Instruction Manual for Motion Server and ASCII Command Interpreter

USL (UserLongint)

Syntax
USL <value>

Description
UserLongint writes and reads information from an array of 32 bit longint variables. Information
may be placed into this array and read from on-board user tasks allowing data to flow between the
host and Motion Server as parameters and return results for user task operations.

Examples
USL 1 1000 ; set user longint 1 to have the value 1000
USL 1 ; retrieve the value of user longint 1

See Also
USB
USB
BUT
AUT

USS (UserSingle)

Syntax
USS <value>

Description
UserSingle writes and reads information from an array of 32 bit floating point variables.
Information may be placed into this array and read from on-board user tasks allowing data to flow
between the host and Motion Server as parameters and return results for user task operations.

Examples
USS 1 56.7 ; set user longint 1 to have the value 56.7
USS 1 ; retrieve the value of user single 1

57

3Command Reference

See Also
USB
USB
BUT
AUT

UTP (UserTaskPresent)

Syntax
UTP <task number>

Description
UserTaskPresent returns a 1 if the indicated task is currently present on the Motion Server
controller and 0 if it is not. A task is considered present if it is currently active, suspended, or
scheduled to run even at a low frequency.

Examples
UTP 1 ; returns 1 if task 1 was present

See Also
USB
USB
BUT
AUT

58

Instruction Manual for Motion Server and ASCII Command Interpreter

WHT (WatchdogHasTripped)

Syntax
WHT

Definition
The watchdog safety system will shut down servo activity if the processor fails to respond to the
timer event correctly. This function indicates if the watchdog system has shut down activity.

Example
WHT

See Also
ResetWatchdog

ZER (Zero)

Syntax
<axis> ZER <value>

Description
Motion Server implements PID servo control. The zero of a control loop is one of the primary
parameters used to set the servo�s compensation and primarily relates to the damping of the system.
This procedure sets the control law zero to be aZeroValue. Values in the range of 200 to 255 are not
unusual. Values greater than 255 are not legal.

Examples
A1 ZER 232

A2 ZER 240

See Also
Gain
Integrator
SetGain
SetIntegrator
Zero

59

4Chapter

4) Command Examples
Objective

These examples illustrate the general pattern of use for Motion Server commands. Examples also
illustrate particular controller functions. If there is an example you would like to see that is not
present, please contact Douloi for sample code.

Single Axis Stepper Motor Movement
The following commands represent what is required to configure and move an individual stepper
motor:

A1 MTT STE ; Set axis 1 to be a stepper motor
A1 SPD 1000 ; Set speed to be 1000 steps per second
A1 ACL 10000 ; Set the acceleration to be

; 10000 steps per second squared
A1 DCL 10000 ; Set the deceleration to be 10000
A1 MTR ON ; Make axis 1 active
A1 MVB 2000 ; Move motor by 2000 relative counts

Single Axis Servo Motor Movement
The following commands represent what is required to configure and move an individual servo
motor:

A2 MTT SRV ; Set axis 2 to be a servo motor
A2 GAI 32 ; Set compensator gain value to be 32
A2 ZER 240 ; Set compensator zero value to 240
A2 LIV OFF ; Turn off loop inversion
A2 SPD 1000 ; Set speed to be 1000 steps per second
A2 ACL 10000 ; Set the acceleration to be

; 10000 steps per second squared
A2 DCL 10000 ; Set the deceleration to be 10000
A2 MTR ON ; Make axis 1 active
A2 MVB 2000 ; Move motor by 2000 relative counts

60

Instruction Manual for Motion Server and ASCII Command Interpreter

Two Axis Coordinated Group
The following commands associate the previous two motors, a stepper and a servo, into a 2 dimen-
sional coordinated group.

C1 INI 1 2 ; Assign group 1 to be composed of motors
; 1 and 2

C1 SPD 1000 ; Set vector speed to be 1000.
; Note that the parameters describing the
; individual axis speeds do not have any
; effect on the group when directed to
; move in coordination.

C1 ACL 10000 ; set vector acceleration
C1 DCL 10000 ; set vector deceleration
C1 MTR ON ; turn on all the motors in the group
C1 MVB 1000 2000 ; move the axis together so they start at

; the same time and stop at the same time
; even though they are travelling
; different distances.

61

5
Pas-
cal
Lan-
guage
Sys-
tem

Chapter

5) Cables and Connectors

Description
Cabling to Motion Server is performed through flat ribbon cables
terminated with IDC connectors.

Axis Group Connectors

There are (4) 60 pin connectors for axis information called "Axis
Group" connectors. Each 60 pin ribbon cable supports (4) axis of
signals. The 60 pin ribbon cable can be split apart into (4) identical
15 pin axis sub-cables. The signals have been chosen in a very regular
pattern so that all of the 15 pin sub-cables are identical in layout.

I/O Connector

There is (1) 50 pin connector containing 48 bits of configurable I/O.
Signals are configured as input or output in 4 bit groups.

E-Stop Connector

There is (1) 6 pin header used to configure E-Stop with a jumper or
to cable to EStop. The jumper can be used to disable E-Stop, connect
I/O signal 1 to be E-Stop, or can serve as a cable connector for an
external E-Stop cable assembly.

External Bus Connector

There is (1) 26 pin connector which supports an external 8 bit bus
allowing Motion Server to control additional hardware elements.

62

Instruction Manual for Motion Server and ASCII Command Interpreter

Axis Signal Descriptions

Encoder A+, A-, B+, B-, I+, I-

Functional Description

Encoder signals provide position feedback from a rotary or linear
encoder. In general these signals are provided in a "quadrature"
format indicating both position and direction change. Encoders are
necessary for servo motors and optional for stepper motors. Differen-
tial signals are desirable demonstrating improved noise immunity,
however single-ended encoders may also be used. When using a
single ended encoders connect the signals to the "+" inputs. The "-"
inputs have a "pull-center" resistors connecting the "-" inputs to the
differential receivers to a 2 volt reference. This provides a default "-"
signal level in the absence of the actual signal. In certain rare cases it
may be necessary to change this default reference value. This can be
done by removing or switching an resistor network which is socketed
on the board. Consult Douloi Automation before attempting any
change.

The "I" signal is the index pulse for an optical encoder. This signal
can be used for higher speed, more repeatable homing, or for en-
coder-drift detection.

Electrical Description

Encoder signals go into a 3486-style differential receiver. The receiv-
ers are rated for a maximum differential mode voltage of +/- 25 volts
and common mode voltage of +/- 15 volts. In most cases the en-
coder signals are 5 volt signals.

63

5Cables and Connectors

Amp Enable High, Amp Enable Low

Functional Description

The amplifier enable signal is a digital output which allows the
motor amplifier to apply power. If the amplifier is not enabled, the
amplifier will not produce motor current regardless of the level of
the motor command voltage. Different amplifiers have different
conventions for what "enable" means. Some apply power if the signal
is a high logic level. Some apply power on a low logic level. To
accommodate these differences both a high and a low level signal are
provided. Review amplifier documentation to learn which level is
required. Douloi Automation recommends setting the amplifier (if
the option is available) to be inactive until a deliberate amp enable
signal is provided by the controller. Providing both a high and low
level signal places the decision of amplifier enable sense into the
machine wiring harness, not an on-controller jumper which could be
misconfigured.

Electrical Description

The amplifier enable signals are driven by a 74LS07 with open
collector outputs.

Position Capture

Functional Description

The Position Capture input can be used for high-speed registration
applications. The position of the encoder is recorded in hardware in
response to a position capture signal. Most often the signal is used as
a homing input. Even without an encoder, the level of the signal can
be monitored in software with the CaptureBit command.

Electrical Description

The Position Capture signal is the "+" side of a 3486 differential
receiver. The "-" side of the receiver goes to a 2 volt reference. Stan-
dard TTL level can be used and voltage up to 24 volts maximum can
be tolerated. There is no on-board pullup resistor for this input. If
the sensor being used is an open-collector style drive, a 4.7k pullup
resistor to +5 volts (available on the axis connector) should be used.

64

Instruction Manual for Motion Server and ASCII Command Interpreter

Position Compare

Functional Description

Position Compare is an output signal that is set when the encoder
hardware detects a specific encoder position. The output can also be
used as a general purpose output.

Electrical Description

Position Compare is a TTL level output with a 12 ma sink and
approximately no source capability. This signal is the most "exposed"
signal on the axis connector set coming directly from a FPGA device
on the board with no additional buffering or protection.

Motor Command

Functional Description

The Motor Command signal is a +/- 10 volt signal most often used
to specify requested current from a servo motor amplifier. The signal
can also represent requested voltage or velocity depending on the
amplifier mode selected. In most cases torque mode is most suitable

Electrical Description

The Motor Command signal is +/- 10 volts with 3 ma drive. Many
amplifiers have differential receivers. In this case, use the motor
command signal on the "+" side of the receiver and ground (from
the axis cable set) on the negative side. Providing Motor Command
and ground in a twisted pair can improve noise immunity.

Step Pulse, Direction

Functional Description

Step Pulse and Direction signals are used for controlling stepper
motors. Standard firmware supports narrow (1 microsecond) step
pulses. Alternate firmware for 4-axis controllers is available for
supporting wide step pulses (30 microseconds) if the stepper driver is
unable to respond to narrow pulses.

65

5Cables and Connectors

Electrical Description

Step Pulse and Direction signals are open collector outputs driven by
a 74LS07.

+5 Volts, Ground

Description

+5 Volts and Ground are available for providing encoder power,
sensor power, and pull-up references. These signals come directly
from the PC's power supply.

Pin Numbering Conventions
There are two different connector styles most often used with the
Motion Server Controller. The first is "2-row IDC" style connectors,
which are the style commonly used with computer disk-drive ca-
bling etc. In this convention, the pin number corresponds to the wire
number, counting sequentially from the end of the wire. This pro-
duces a "back and forth" counting pattern on the IDC connector.

The other connector often used is a D subminiature style. This
connector has a pin definition which can often be read on the con-
nector itself. Small, inscribed numbers next to the pins indicate that
the pin numbering is sequential along the length of the connector,
and then resumes at the beginning of the next row. This is quite
different from the "back and forth" convention of the 2 row IDC
connector. It is most convenient to use D connectors by "splitting
apart" the 60 pin IDC cable and then crimping IDC style D connec-
tors. NOTE THAT THE PIN NUMBERING CONVENTION
FOR D-CONNECTORS ATTACHED TO THE RIBBON
CABLE IS DIFFERENT THAN THE IDC 2-ROW CONVEN-
TION FOR THE CABLE ITSELF. Please refer to the proper table
when preparing to wire to the controller.

66

Instruction Manual for Motion Server and ASCII Command Interpreter

Axis Group Connector Definitions, 2-Row IDC
The following Table defines the connectors for the axis groups. These connectors are designated "Axis 1-4",
"Axis 5-8", "Axis 9-12", and "Axis 13-16" on the printed circuit board silk screen. The signal definitions is a
regular pattern both along the connector, and from one connector to the next. For example, Pin 3 is always
an Encoder B+ signal with the axis defined by which connector the pin is on. Each pin in any particular
connector has 3 other counterparts spaced a multiple of 15 away. For example, pin 18 (pin 3 + 15) is also
an Encoder B+ signal as well as pin 33 (pin 3 +30) and pin 48 (pin 3 + 45)

Pin Number Description Axis 1-4 Axis 5-8 Axis 9-12 Axis 13-16

1 Encoder A+ Axis 1 Axis 5 Axis 9 Axis 13
2 Encoder A- Axis 1 Axis 5 Axis 9 Axis 13
3 Encoder B+ Axis 1 Axis 5 Axis 9 Axis 13
4 Encoder B- Axis 1 Axis 5 Axis 9 Axis 13
5 Encoder I+ Axis 1 Axis 5 Axis 9 Axis 13
6 Encoder I- Axis 1 Axis 5 Axis 9 Axis 13
7 Amp Enable High Axis 1 Axis 5 Axis 9 Axis 13
8 Amp Enable Low Axis 1 Axis 5 Axis 9 Axis 13
9 Position Capture Axis 1 Axis 5 Axis 9 Axis 13

10 Position Compare Axis 1 Axis 5 Axis 9 Axis 13
11 Motor Command Axis 1 Axis 5 Axis 9 Axis 13
12 Step Pulse Axis 1 Axis 5 Axis 9 Axis 13
13 Direction Axis 1 Axis 5 Axis 9 Axis 13
14 +5 Volts Axis 1 Axis 5 Axis 9 Axis 13
15 Ground Axis 1 Axis 5 Axis 9 Axis 13

16 Encoder A+ Axis 2 Axis 6 Axis 10 Axis 14
17 Encoder A- Axis 2 Axis 6 Axis 10 Axis 14
18 Encoder B+ Axis 2 Axis 6 Axis 10 Axis 14
19 Encoder B- Axis 2 Axis 6 Axis 10 Axis 14
20 Encoder I+ Axis 2 Axis 6 Axis 10 Axis 14
21 Encoder I- Axis 2 Axis 6 Axis 10 Axis 14
22 Amp Enable High Axis 2 Axis 6 Axis 10 Axis 14
23 Amp Enable Low Axis 2 Axis 6 Axis 10 Axis 14
24 Position Capture Axis 2 Axis 6 Axis 10 Axis 14
25 Position Compare Axis 2 Axis 6 Axis 10 Axis 14
26 Motor Command Axis 2 Axis 6 Axis 10 Axis 14
27 Step Pulse Axis 2 Axis 6 Axis 10 Axis 14
28 Direction Axis 2 Axis 6 Axis 10 Axis 14
29 +5 Volts Axis 2 Axis 6 Axis 10 Axis 14
30 Ground Axis 2 Axis 6 Axis 10 Axis 14

67

5Cables and Connectors

Pin Number Description Axis 1-4 Axis 5-8 Axis 9-12 Axis 13-16

31 Encoder A+ Axis 3 Axis 7 Axis 11 Axis 15
32 Encoder A- Axis 3 Axis 7 Axis 1 Axis 15
33 Encoder B+ Axis 3 Axis 7 Axis 11 Axis 15
34 Encoder B- Axis 3 Axis 7 Axis 11 Axis 15
35 Encoder I+ Axis 3 Axis 7 Axis 11 Axis 15
36 Encoder I- Axis 3 Axis 7 Axis 11 Axis 15
37 Amp Enable High Axis 3 Axis 7 Axis 11 Axis 15
38 Amp Enable Low Axis 3 Axis 7 Axis 11 Axis 15
39 Position Capture Axis 3 Axis 7 Axis 11 Axis 15
40 Position Compare Axis 3 Axis 7 Axis 11 Axis 15
41 Motor Command Axis 3 Axis 7 Axis 11 Axis 15
42 Step Pulse Axis 3 Axis 7 Axis 11 Axis 15
43 Direction Axis 3 Axis 7 Axis 11 Axis 15
44 +5 Volts Axis 3 Axis 7 Axis 11 Axis 15
45 Ground Axis 3 Axis 7 Axis 11 Axis 15

46 Encoder A+ Axis 4 Axis 8 Axis 12 Axis 16
47 Encoder A- Axis 4 Axis 8 Axis 12 Axis 16
48 Encoder B+ Axis 4 Axis 8 Axis 12 Axis 16
49 Encoder B- Axis 4 Axis 8 Axis 12 Axis 16
50 Encoder I+ Axis 4 Axis 8 Axis 12 Axis 16
51 Encoder I- Axis 4 Axis 8 Axis 12 Axis 16
52 Amp Enable High Axis 4 Axis 8 Axis 12 Axis 16
53 Amp Enable Low Axis 4 Axis 8 Axis 12 Axis 16
54 Position Capture Axis 4 Axis 8 Axis 12 Axis 16
55 Position Compare Axis 4 Axis 8 Axis 12 Axis 16
56 Motor Command Axis 4 Axis 8 Axis 12 Axis 16
57 Step Pulse Axis 4 Axis 8 Axis 12 Axis 16
58 Direction Axis 4 Axis 8 Axis 12 Axis 16
59 +5 Volts Axis 4 Axis 8 Axis 12 Axis 16
60 Ground Axis 4 Axis 8 Axis 12 Axis 16

68

Instruction Manual for Motion Server and ASCII Command Interpreter

Axis Group Connector Definitions, D-Style
If the 60 pin axis cable is split into (4) 15 pin groups, it is possible to attach 15 pin IDC style connectors for
a simple cable assembly. However the D connector pin numbering convention does not correspond to the
wire number sequentially across. When using IDC D connectors please refer to the following table:

D Pin Number Description

1 Encoder A+
2 Encoder B+
3 Encoder I+
4 Amp Enable High
5 Position Capture
6 Motor Command
7 Direction
8 Ground
9 Encoder A-

10 Encoder B-
11 Encoder I-
12 Amp Enable Low
13 Position Compare
14 Step Pulse
15 +5 Volts

69

5Cables and Connectors

I/O Connector Definition
The 50 pin connector provides TTL level inputs and outputs. Outputs sink 12 ma. The pin number is the
I/O number with the exception of 49 (+5) and 50 (ground). Input or output sense is configured in 4 bit
groups. The groups are defined by "splitting" the connector into (2) 1x50 strips, and then slicing those
strips into (12) groups of (4) bits each. This partitioning was chosen so that the even-pin strip could be
configured as inputs allowing a standard OPTO-22 cable to plug into the connector without contention
between the cable grounds (located on all the even pins) and signals normally available on those pins.

Description Pin Pin Description

Group 1 I/O 1 1 2 I/O 2 Group 2
Group 1 I/O 3 3 4 I/O 4 Group 2
Group 1 I/O 5 5 6 I/O 6 Group 2
Group 1 I/O 7 7 8 I/O 8 Group 2

Group 3 I/O 9 9 10 I/O 10 Group 4
Group 3 I/O 11 11 12 I/O 12 Group 4
Group 3 I/O 13 13 14 I/O 14 Group 4
Group 3 I/O 15 15 16 I/O 16 Group 4

Group 5 I/O 17 17 18 I/O 18 Group 6
Group 5 I/O 19 19 20 I/O 20 Group 6
Group 5 I/O 21 21 22 I/O 22 Group 6
Group 5 I/O 23 23 24 I/O 24 Group 6

Group 7 I/O 25 25 26 I/O 26 Group 8
Group 7 I/O 27 27 28 I/O 28 Group 8
Group 7 I/O 29 29 30 I/O 30 Group 8
Group 7 I/O 31 31 32 I/O 32 Group 8

Group 9 I/O 33 33 34 I/O 34 Group 10
Group 9 I/O 35 35 36 I/O 36 Group 10
Group 9 I/O 37 37 38 I/O 38 Group 10
Group 9 I/O 39 39 40 I/O 40 Group 10

Group 11 I/O 41 41 42 I/O 42 Group 12
Group 11 I/O 43 42 44 I/O 44 Group 12
Group 11 I/O 45 45 46 I/O 46 Group 12
Group 11 I/O 47 47 48 I/O 48 Group 12

+5 Volts 49 50 Ground

70

Instruction Manual for Motion Server and ASCII Command Interpreter

EStop Connector Definition
The EStop connector has 6 pins defined as follows

pin 1 Not Connected (pin 1 is closest to the mounting bracket, rear of PC)
pin 2 Ground
pin 3 E-Stop input
pin 4 I/O 1 from 50 pin connector
pin 5 12 Volt Input for Unlocking Flash Memory
pin 6 12 Volt Source from PC

Placing a jumper between pins 2 and 3 enables the E-Stop (which must be maintained at ground against its
4.7k pullup). This is not recommended if doing anything besides bench testing free spinning motors.

Placing the jumper between pins 3 and 4 redirects the EStop to be from the general I/O connector where
an OPTO-22 module rack may be hooked in, or some other IO interconnect that has been chosen for
general purpose I/O

A third option is to put a 6 x 1 plug into this header with a cable for pins 2 and 3. A normally closed switch
would serve as an E-Stop switch. If the switch disconnected, or the cable was missing, the controller will
not enable power to the amplifiers.

The on-board Flash memory chip is used to store application programs. If the board contains a 28F class
Flash Memory chip, a 12 volt level must be supplied to the chip to "unlock" the chip and permit alteration
of its contents. This level can be provided by turning on switch number 4 on the board itself. In some
applications, accessing switch 4 may be inconvenient. In this case, an external switch can be provided that
connects pin 5 and pin 6 allowing the memory device to be programmed. Alternately, consult with Douloi
Automation regarding a newer 29F class memory chip which does not require the 12 volt level.

71

5Cables and Connectors

External Bus Connector
The remaining 26 pin connector provides a simplified 8-bit bus that can be used to connect to additional
hardware. Note that Douloi provides a PC/104 "bridge" accessory that is driven by this connector. The PC/
104 format allows the use of many third part cards

Power signals from this connector should only be for signal-level power. If you need any significant
current, use a disk-drive connector. Additional details about the use of this bus are available from Douloi
Automation on request.

Pin Description

1 Data 0
2 Data 1
3 Data 2
4 Data 3
5 Data 4
6 Data 5
7 Data 6
8 Data 7
9 Addr 0
10 Addr 1
11 Addr 2
12 Addr 3
13 Addr 4
14 Addr 5
15 Addr 6
16 Select
17 Write/Read
18 Comm_Capture_1
19 Comm_Capture_2
20 Comm_Capture_3
21 Comm_Capture_4
22 Reset
23 +12 Volts
24 -12 Volts
25 +5 Volts
26 Ground

72

Instruction Manual for Motion Server and ASCII Command Interpreter

	Table of Contents
	1) Introduction
	Welcome!
	Objective of Document
	Motion Server Specifications
	Motion System
	Servo Specifications
	Servo Capabilities
	Stepper Capabilities
	Timer Event
	Multiple Motion Application Threads
	Microsoft Windows
	Long-Slot ISA Format
	Servo Application Workbench

	Methods Of Use
	Servo Application Workbench
	SERVOLIB.DLL Library
	ASCII Commands
	Binary Commands

	2) ASCII Communication Protocol
	Purpose
	Serial Port Configuration
	Procedure Message Format
	Object Message Format

	3) Command Reference
	Command Summary
	ABT (Abort)
	ACL (Accel)
	ACP (ActualPosition)
	AIC (ArmInputCapture)
	AMB (AppendMoveBy)
	AMT (AppendMoveTo)
	ARC (AppendArc)
	AUT (AbortUserTask)
	AXC (ArmIndexCapture)
	BMB (BeginMoveBy)
	BMC (BeginMoveAlongCurve)
	BMT (BeginMoveTo)
	BST (BeginStop)
	BUT (BeginUserTask)
	CAP (CapturePosition)
	CAT (CaptureHasTripped)
	CIO (ConfigureIOBitAsOutput)
	CIV (SetCoordinateInversion)
	CLR (Clear)
	COP (CommandedPosition)
	DCL (Decel)
	DEP (DestinationPosition)
	DSP (Dispose)
	ENA (Enable)
	ERL (SetErrorLimit)
	ERP (ErrorPosition)
	GAI (Gain)
	INB (InputBit)
	INI (Init)
	ITG (Integrator)
	JOG (Jog)
	LIV (LoopInversion)
	LNK (LinkToBuffer)
	MAC (MoveAlongCurve)
	MIF (MoveIsFinished)
	MTR (Motor)
	MTT (MotorType)
	MVB (MoveBy)
	MVT (MoveTo)
	NLT (SetNegativeLimit)
	PLT (PositiveLimit)
	PUT (SuspendUserTask)
	RSA (ResetAllocation)
	RSW (ResetWatchdog)
	RUT (ResumeUserTask)
	SOB (SetOutputBit)
	SOE (SetOutputEnable)
	SPD (Speed)
	STP (Stop)
	SUT (ScheduleUserTask)
	TRQ (CommandedTorque)
	UHD (UserHasDisabled)
	USB (User Boolean)
	USL (UserLongint)
	USS (UserSingle)
	UTP (UserTaskPresent)
	WHT (WatchdogHasTripped)
	ZER (Zero)

	4) Command Examples
	Objective
	Single Axis Stepper Motor Movement
	Single Axis Servo Motor Movement
	Two Axis Coordinated Group

	5) Cables and Connectors
	Description
	Axis Group Connectors
	I/O Connector
	E-Stop Connector
	External Bus Connector

	Axis Signal Descriptions
	Encoder A+, A-, B+, B-, I+, I-
	Functional Description
	Electrical Description

	Amp Enable High, Amp Enable Low
	Functional Description
	Electrical Description

	Position Capture
	Functional Description
	Electrical Description

	Position Compare
	Functional Description
	Electrical Description

	Motor Command
	Functional Description
	Electrical Description

	Step Pulse, Direction
	Functional Description
	Electrical Description

	+5 Volts, Ground
	Description

	Pin Numbering Conventions
	Axis Group Connector Definitions, 2-Row IDC
	Axis Group Connector Definitions, D-Style
	I/O Connector Definition
	EStop Connector Definition
	External Bus Connector

