
Douloi Automation, Inc.
3517 Ryder Street
Santa Clara, CA 95051-0714

Voice (408) 735-6942
Fax (408) 735-6946
EMail info@douloi.com
Site: www.douloi.com

Instruction Manual for
Motion Server Products &
Binary Command Interpreter

March, 2001

Copyright © 1996 ,1997, 1998, 1999, 2000, 2001
Douloi Automation, Inc.
All Rights Reserved

III

Table of Contents

1) Introduction ... 1-1

Welcome! ... 1-1
Objective of Document... 1-1
Motion Server Specs (DMS in PC) ... 1-2

Motion System .. 1-2
Servo Specifications ... 1-2
Servo Capabilities .. 1-3
Stepper Capabilities ... 1-3

Motion Server Block Specs (Standalone) .. 1-4
Motion System .. 1-4
Servo Specifications ... 1-4
Servo Capabilities .. 1-4
Stepper Capabilities ... 1-5

Common Specs (DMS and MSB) ... 1-6
Timer Event ... 1-6
Multiple Motion Application Threads ... 1-6
Microsoft Windows.. 1-7
Servo Application Workbench.. 1-7

Binary Command Interpreter... 1-8
Description.. 1-8
Methods of Use ... 1-8

2) Binary Communication Protocol .. 2-1

Purpose .. 2-1
Board Addressing .. 2-1
Communication Model ... 2-1
Register Map ... 2-3
Register Descriptions ... 2-3

Channel Request (read) ... 2-3
Channel Control (write) ... 2-4
Channel Status (read) ... 2-4
Channel Control (write) ... 2-4

Fifo Hardware Abstraction ... 2-5
AllocateChannel .. 2-5
FifoReset ... 2-6
FifoWriteWord ... 2-6
FifoWriteInteger ... 2-6
FifoWriteBoolean ... 2-7
FifoWriteLongint .. 2-7
FifoWriteSingle .. 2-8

IV

FifoSendMessageAndWaitForResponse; ... 2-8
FifoReadWord ... 2-9
FifoReadInteger ... 2-9
FifoReadBoolean ... 2-9
FifoReadLongint .. 2-10

General Command Abstraction ... 2-10
Transmit Structure .. 2-10
Response Structure .. 2-11
dms_Procedure ... 2-12
dms_BooleanFunction ... 2-12
dms_AxisProcedure ... 2-13
dms_AxisProcedureIntegerParam ... 2-13
dms_AxisProcedureLongintParam .. 2-14
dms_AxisProcedureBooleanParam ... 2-14
dms_AxisIntegerFunction ... 2-15
dms_AxisLongintFunction .. 2-15
dms_AxisBooleanFunction ... 2-16
dms_T2AxisVectorProcedure ... 2-16
dms_T3AxisVectorProcedure ... 2-17
dms_T4AxisVectorProcedure ... 2-17
dms_T5AxisVectorProcedure ... 2-18
dms_T6AxisVectorProcedure ... 2-19

3) Command Reference .. 3-1

ABit .. 3-4
Abort .. 3-5
Accel .. 3-6
ActualPosition ... 3-7
ArmCompare .. 3-8
ArmIndexCapture ... 3-9
ArmInputCapture .. 3-10
BBit .. 3-11
BeginMoveAlongCurve.. 3-12
BeginUserTask ... 3-13
BeginStop ... 3-14
CaptureBit .. 3-15
Busy.. 3-16
CaptureHasTripped ... 3-17
CapturePosition .. 3-18
Clear ... 3-19
CommandedPosition ... 3-20
CommandedTorque .. 3-21
ConfigureIOBitAsOutput ... 3-22
Decel .. 3-23
DestinationPosition ... 3-24
EnableIsOn ... 3-25

V

ErrorCode ... 3-26
ErrorLimit .. 3-27
ErrorPosition ... 3-28
Gain ... 3-29
IBit .. 3-30
Init (AcitveX only) .. 3-32
InputBit .. 3-33
Integrator .. 3-35
Jog .. 3-36
LinkToBuffer ... 3-37
MotorIsOn .. 3-39
MoveAlongCurve .. 3-40
MoveIsFinished ... 3-41
NegativeLimit .. 3-43
PerformBuffer (ActiveX only) ... 3-44
PositiveLimit.. 3-45
ProfileVelocity ... 3-46
ResetAllocation ... 3-47
ResetWatchdog ... 3-48
SampleRate ... 3-50
SetAccel .. 3-51
SetActualPosition .. 3-52
SetBuffer (ActiveX only) ... 3-54
SetCaptureTrip .. 3-55
SetCommandedPosition .. 3-57
SetCommandedTorque ... 3-59
SetCompareBit .. 3-61
SetCoordinateInversion ... 3-62
SetDac .. 3-64
SetDecel ... 3-66
SetEnable .. 3-68
SetErrorLimit ... 3-70
SetGain ... 3-72
SetIntegrator ... 3-74
SetLoopInversion .. 3-75
SetMotor ... 3-76
SetMotorType (DMS only) ... 3-78
SetNegativeLimit ... 3-79
SetOutputBit ... 3-80
SetOutputEnable (DMS Only) ... 3-82
SetPositiveLimit ... 3-83
SetSampleRate .. 3-84
SetSpeed .. 3-86
SetUserBoolean .. 3-88
SetUserLongint.. 3-90
SetUserSingle .. 3-92
SetZero ... 3-94

VI

Speed ... 3-96
Stop/StopAxis .. 3-98
T2AxisAppendArc ... 3-99
T3AxisAppendArc ... 3-101
TNAxisAppendMoveBy ... 3-103
TNAxisAppendMoveTo ... 3-106
TNAxisBeginMoveBy ... 3-110
dms_TNAxisBeginMoveTo ... 3-114
TNAxisDispose .. 3-118
TNAxisInit ... 3-119
TNAxisMoveBy ... 3-122

4) Visual Basic DLL Examples ... 4-1

Objective .. 4-1
Setting Controller Parameters and Performing Motion .. 4-1
Monitoring Controller Status.. 4-4

5) C Language DLL Examples.. 5-1

Objective .. 5-1
C Example Framework .. 5-1
Setting Controller Parameters and Performing Motion .. 5-3
Single Axis Motion Pattern ... 5-4
Coordinated Motion ... 5-5
Curved Motion ... 5-6

6) Pascal DLL Examples .. 6-1

Objective .. 6-1
Setting Controller Parameters and Performing Motion .. 6-1
Single Axis Motion Pattern ... 6-2
Coordinated Motion ... 6-3

7) Visual Basic ActiveX Examples .. 7-1

Objective .. 7-1
Preparing the Host for Ethernet Communication ... 7-1
Preparing Visual Basic to use the ActiveX Control .. 7-1
Checking the Ethernet Setup ... 7-2
Returning to Ethernet Use After Using SAW ... 7-2
Simple Motion .. 7-2
Monitoring Controller Status.. 7-3
Coordinated XY Motion .. 7-3
Circular Interpolation .. 7-4

VII

8) MSB Connections... 8-85

Description ... 8-85
Connector Layout .. 8-85
Power and Isolated I/O Connector ... 8-87
Servo Axis Connectors ... 8-88
Stepper Axis Connectors .. 8-90
TTL I/O Connector .. 8-90
MSB V6 Connector .. 8-91
Current Release Limitations ... 8-92

9) DMS Connections .. 9-1

Description ... 9-1
Axis Group Connectors .. 9-1
I/O Connector ... 9-1
EStop Connector ... 9-1
External Bus Connector ... 9-1

Axis Group Connector Definitions ... 9-2
I/O Connector Definition .. 9-4
EStop Connector Definition .. 9-5
External Bus Connector ... 9-6

10) Configuring Motion Server for Binary Commands 10-1

Overview .. 10-1
Configuration .. 10-1

VIII

1-1

1Chapter

1) Introduction

Welcome!
Welcome to Motion Server and Douloi Automation's Motion Control soft-
ware components, tools to simplify and accelerate the creation of motion
control applications.

Douloi Automation wants to encourage your project's success. Free technical
support is available to answer your questions, assist you through trouble-spots
in product use, and to recommend strategies and approaches for solving
different aspects of a motion control problem. Sample code, application
prototypes, and application notes can be provided to response to specific
questions you may have. We would much rather have you call and get answers
than to be frustrated or slowed in your automation project. Please feel free to
contact us at:

• voice (408) 735-6942
• fax (408) 735-6946

• EMail info@douloi.com

Objective of Document
This document provides information on the use of the Binary Command
Interpreter for directing Motion Server controllers. Binary commands are
supported through different communication methods including computer
backplane (for in-computer format controllers) or over networks such as
ethernet (for stand-alone format controllers). Controller checkout and
system analysis is performed through Douloi's Servo Application Workbench
software, a Windows application. Although Windows is not necessary for the
use of the Binary Command Interpreter, application development and testing
can be accelerated when Douloi's Windows tools can be brought to bear on
machine setup and diagnostics. Saw can also be used to place into controllers
application specific programs. For instructions on setting up the controller
please consult the setup chapter in the Instruction Manual for Motion Server
and Servo Application Workbench.

1-2

User Manual for Motion Server Controllers and Binary Command Interpreter

Motion Server Specs (DMS in PC)

Motion System

• 128 MHz 32 bit processor with on-chip cache memory
• 4, 8, 12, or 16 axes per system

• Servo or Stepper on per-axis basis
• Multiple independent axis groups

• Trapezoidal and S-Curve profiling
• Custom profiling at application level

• 32 bit position management
• Sample rates from 1 to 4 kHz

• Linear, circular, curve interpolation
• Electronic gearing with phase adjust

• Electronic camming
• Tangent servo

• Master/slave coordination
• High speed registration

• Kinematics
• Motion superposition

• Coordination tailoring

Servo Specifications

• 486 class processor
• On-board real-time operating system supporting 12 seperate activities

as well as motion control
• 4 to 16 axis of coordinated motion

• Mixed servo and stepper motor control
• 32 bit position resolution

• 48 general purpose configurable I/O
• 1 Capture signal per axis

• User Disable signal
• 2 amp enable signals per axis, one active high, the other active low

• watchdog safety system

1-3

1Introduction

Servo Capabilities

When configured to run a servo motor the hardware provides

• 4 MHz quadrature inputs with 3 bit filters for 4 axis, 1 MHz quadra-
ture rate for 16 axis

• high speed position capture
• high speed position compare

• +/- 10 volt command signal with 12 bit resolution

Stepper Capabilities

When configured to run a stepper motor the hardware provides

• 2 Mhz step rate for 4 axis, 500 kHz step rate for 16 axis

• configurable step pulse polarity

1-4

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

Motion Server Block Specs (Standalone)

Motion System

• 128 MHz 32 bit processor with on-chip cache memory
• 2 to 10 axes per system

• Servo or Stepper in pairs configured at factory
• Multiple independent axis groups

• Trapezoidal and S-Curve profiling
• Custom profiling at application level

• 32 bit position management
• Sample rates from 1 to 8 kHz

• Linear, circular, curve interpolation
• Electronic gearing with phase adjust

• Electronic camming
• Tangent servo

• Master/slave coordination
• High speed registration

• Kinematics
• Motion superposition

• Coordination tailoring

Servo Specifications

• 486 class processor
• On-board real-time operating system supporting 12 seperate activities

as well as motion control
• 2 to 10 axis of coordinated motion

• Mixed servo and stepper motor control
• 32 bit position resolution

• 18 Isolated inputs, 24 volts
• 8 Isolated outputs, 24 volts

 • 48 general purpose configurable I/O
• 4 Capture signals per block

• EStop signal
• dual watchdog safety system

Servo Capabilities

1-5

1Introduction

When configured to run a servo motor the hardware provides

• 2 MHz quadrature inputs with 3 bit filters for 4 axis, 1 MHz quadra-
ture rate for 10 axis

• high speed position capture
• high speed position compare

• +/- 10 volt command signal with 12 bit resolution

Stepper Capabilities

When configured to run a stepper motor the hardware provides

• 2 Mhz step rate for 4 axis, 1 Mhz step rate for 6 axes
• Step and Direction presented as differentially driven pairs

1-6

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

Common Specs (DMS and MSB)

Timer Event

Motion Server provides motion control functions by responding to a timer
which occurs generally at 1 kHz although the frequency is programmable.
This timer event performs three major functions.

The first function is control law execution. Servo control is accomplished
with the familiar zero, pole, integrator filter used in many motion control
systems. This digital control law operates at a 1 kHz sample rate providing
comfortable closed loop system frequencies of 100 Hz and below. Stepper
motor control is accomplished by updating pulse generating electronics at a
frequency of of 1 kHz providing continuous velocity control of stepper
motors.

The second function of the timer event is motion profiling. Motion Server is
able to profile motion for up to 16 physical axes. Motion Server Block is able
to coordinate up to 10 axes. These axes can be combined in different arrange-
ments to form various coordinated multi-axis groups. Any particular axis
group can perform coordinated motion along an arbitrary path. Multiple axis
groups can perform motion concurrently and independently. The motion
profiler uses a dynamic profiling technique which permits changing profile
parameters on the fly including acceleration, deceleration, slew speed, and in
some cases destination and motion type. This permits motion mode "splicing"
without stopping. For example a positioning move can be changed to a jog at a
new speed on the fly.

The third timer event function is multitasking. Multiple user-written motion
application programs may be resident in Motion Server. The timer event
contains a multitasker which activates and manages the operation of these
programs.

Multiple Motion Application Threads

As many as 12 separate motion application "threads" or programs (which are
distinct from motion profiles) can be running concurrently and indepen-
dently at any particular time. These programs are written in Douloi Pascal, a
dialect of Object Pascal. Programs can communicate to each other through

1-7

1Introduction

shared data structures. They can also access the motion control system,
communicate with Windows applications created by the Servo Application
Workbench, and to the disk file system if SAW is present.

Microsoft Windows

Microsoft Windows serves as the most common development and target
environment for motion control applications using Douloi products. The
familiar interface aids both developers and users of the resulting applications
reducing the developers learning curve and the operators training time.
Motion Server can be used with other operating systems through various
communication methods available. Applications programs for downloading
into Motion Server are prepared with Servo Application Workbench under
Microsoft Windows. Once downloaded and retained in on-board FLASH
memory, these functions can be invoked from other communication meth-
ods.

Servo Application Workbench

Servo Application Workbench (SAW) is a Windows application which greatly
simplifies the creation of multithreading motion application programs and
operator control elements to direct them. Applications may contain conven-
tional Windows controls such as buttons and text items as well as more
specialized controls such as components available in the on-line software
catalog.

Inside Servo Application Workbench is a high level language compiler. The
compiler changes the descriptions of the motion applications into native 32 bit
486 object code which executes on Motion Server very quickly. The compiler
“knows” about the motion system, the multithreading system, and Windows.
This permits the application developer to access different system resources in
a consistent way without having to worry about how these resources are being
provided.

Servo Application Workbench allows the developer to construct motion
applications in a “clip art” fashion by pasting pre-fabricated parts and assem-
blies into the application. After “screen painting” the application and filling in
the program’s behavior Servo Application Workbench compiles the motion
application programs and creates the associated Windows application to
operate them. This ability to create new real-time behavior and download into
Motion Server is constrained to the Windows environment because the
language compiler is a Windows DLL. However, new motion controller
capabilities (beyond the standard command set) can be created in SAW,
downloaded into Motion Server, and remembered in "flash" memory for use
under another operating system.

1-8

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

Binary Command Interpreter

Description

The Binary Command Intepreter is a command set that can be sent to Motion
Server Controllers from a host. Commands might be coming from a Win-
dows language such as Visual Basic, an Soft PLC software program such as
Think-and-Do software, or from some other host device. BCI commands can
be used to access standard controller functions such as independent and
coordinated axis movement. BCI commands can also be used to control on-
board application specific programs that have been written and downloaded
with Servo Applicaion Workbench software.

Methods of Use

This manual describes Binary Commands use through several methods. One
method is a Dynamic Link Library (32 bit Windows DLL). Another method of
use is through an ActiveX control. Currently The DLL supports the DMS in-
computer controllers and the ActiveX control supports Motion Server Block
controllers through an Ethernet Modbus TCP/IP connection (Modicon
Ethernet). However the means of communication and the controllers being
targeted are subject to change while maintaining the communication interface
described.

2-1

2Chapter

2) Binary Communication
Protocol
Purpose

The following chapter describes low-level details required to write a
software interface to Motion Server through the ISA bus (DMS
format). These details are only required if you are using a language
Douloi does not provide a driver for, or if you have a particular interest
in how the driver operates. These details are concealed within the
commands described in chapter 3.

Board Addressing
Motion Server communicates through the ISA bus I/O space. The
base address of the board is $330 hex and occupies 32 consecutive
bytes. This resides in what is commonly used for network adaptors,
but is not a typical default address for a network adaptor. For binary
communication the board is managed exclusively as a 16 bit resource.
Only 16 bit, word sized transfers are performed to and from Motion
Server.

Communication Model
The following section describes different aspects of Motion Server's
communication system, but not the sequence of use. The examples
section shows the particular sequence of commands required to
achieve communication.

The following paragraphs describe the general interface that should be
followed to insure compatibility with future software versions. How-
ever the full functionality described is not fully realized in the current
shipping version. Differences are noted in italics.

Motion Server communicates to multiple client programs through
independent I/O space FIFOs (hence the name Motion Server). The
most typical case for multiple clients is operating diagnostic instru-
ments (i.e. software storage scopes and I/O monitors) while the
machine control application is running.

2-2

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

Software wishing to communicate with Motion Server must be able
to discover "what phone line is available" so as to not break in to an
already present conversation. Channels are allocated and released
through channel management registers.

FIFOs have 16 bit data registers for reading and writing information.
They also have control and status registers. The FIFO is implemented
as a single memory array with a single address control which is used
for both outgoing and incoming information. Motion Server operates
in a reactive, rather than proactive, manner. The host computer resets
the FIFO, writes an instruction into the FIFO, and then sets a flag
indicating that data is ready. Unlike conventional hardware FIFOs
that indicate data is present as soon as one write has been performed,
Motion Server allows the host to manipulate the FIFO before Motion
Server is informed that data is present. This simplifies communication
and prevents Motion Server from expecting information before it has
been completely submitted by the host.

The host can reset the FIFO, write an instruction, reset the FIFO
again, and read what has just been written before submitting the
information to Motion Server.

All of the channels in Motion Server perform in the same manner and
have the same bit layout.

As well as multple clients at one time, Motion Server supports mul-
tiple communication techniques at one time. Techniques available
include:

• System Binary
• User Binary
• ASCII

Advanced users can create their own dialects with Servo Application
Workbench if required. A new channel starts up in ASCII. The host
program can then select the command style by using the
SelectProtocol command. Communication from that point on con-
forms to the chosen protocol.

At this time, channel allocation is static, not dynamic. Channel 1 is fixed to
operate as SystemBinary and is used by SAW and SERVOLIB driven
applications. Channel 2 is fixed to operate as the Binary Command Interpreter
channel. ASCII interpretation is not provided in the current release. Channels
start up in their fixed protocols.

2-3

2Binary Communication Protocol

Register Map
The following registers are present in the Motion Server I/O footprint:

Address Read Write

BaseAddress Channel Request Channel Control
BaseAddress+2 Reserved Reserved
BaseAddress+4 Channel 1 Data Channel 1 Data
BaseAddress+6 Channel 1 Status Channel 1 Control
BaseAddress+8 Channel 2 Data Channel 2 Data
BaseAddress+10 Channel 2 Status Channel 2 Control
BaseAddress+12 Channel 3 Data Channel 3 Data
BaseAddress+14 Channel 3 Status Channel 3 Control

Register Descriptions

Channel Request (read)

The value read from the Channel Request register is an offset, with
respect to the board's base address, of the next available communica-
tion channel. The value read is the literal binary offset number, as a 16
bit word. After being read, the Channel Request register "increments"
to the next available channel offset. Multiple reads of Channel Re-
quest produce different values and will eventually yield the value "0"
indicating no more channels available.

Channel Request produces its offset through hardware in the com-
munication chip on Motion Server, not through software behavior in
the on-board processor. Channel Requests are atomic, intrinsically
exclusive I/O space read operations insuring that no two client pro-
grams can "race" each other and come up with the same channel by
somehow "tieing".

When a program is finished with Motion Server it needs to release the
channel, or "hang up the phone" so that the channel is available to
some other program which may need it.

This register is currently inactive as channels are statically allocated. A read
from this location is currently undefined.

2-4

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

Channel Control (write)

Normally channels are released by a command in whatever commu-
nication method has been chosen. The Channel Control register is
used to "clear the lines" in the event that this has not taken place. The
data value written to Channel Control is not used, only the write
event is necessary to initialize channel allocation. If programs are
written correctly this register should not need to be used.

This register is currently inactive.

Channel Status (read)

Channel status provides a single bit of information, bit 0, which
indicates that data is available to be read from the FIFO. A "high" or
"1" level indicates that data is available. A "low" or "0" value indicates
that no data is available. This bit is reset to "0" by the first read per-
formed by the host although additional data may be available to read.
The amount of data is based on message sizes of the command being
performed, not the state of this bit while reading information from the
FIFO.

Channel Control (write)

Channel control involves the following 2 bits:

• bit 0 - Reset Address
• bit 1 - Send Message

Bits are used by setting the value to "1". A value of "0" has no effect.
Only one bit should be used at a time, so legal values include 1 and 2.

Bit 0, Reset Address, is used to reset the address of the FIFO to the
beginning of the FIFO memory. Subsequent writes to the FIFO data
register then places information in the FIFO with the FIFO memory
automatically incrementing. Reset Address is not destructive. The
FIFO can be written and the address reset prior to sending the mes-
sage.

Send Message is used to tell Motion Server that the command has
been prepared and is available for reading. Once Send Message has
been set the host program MUST NOT manipulate the FIFO again
until the status bit indicate that information is available to be read.

2-5

2Binary Communication Protocol

Fifo Hardware Abstraction
Given the structure of the hardware and data types used in the binary
protocol, the following hardware abstraction is recommended for
manipulating the FIFOs. The abstraction is presented in Pascal and
provided as source code in both C and Pascal under the name
BIN_CMND.CPP and BIN_CMND.PAS

Pascal has more native strict data types than C such as a native boolean
type. The drivers support these various types with functions and
procedures that reflect the types being handled. In C, these type
distinctions disappear and the code bodys of some routines degenerate
to the same content but are retained in the driver for consistency.

In this dialect of pascal, the I/O space of the computer is modelled as a
byte-ordinal array which performs 16 bit transfers named PortW.

AllocateChannel

This command retreives the offset of the next available channel for
use by the host.

Pascal Implementation

var FifoAddress:word; {persistent variable}

function AllocateChannel:boolean;
var OffsetValue:integer;
begin
OffsetValue:=PortW($330);
if OffsetValue > 0 then

begin
FifoAddress:=PortW($330)+$330;
AllocateChannel:=true;
end

else
AllocateChannel:=false;

end;

Current Pascal Implementation

var FifoAddress:word; {persistent variable}

function AllocateChannel:boolean;
begin
FifoAddress:=$338; {static allocation}
AllocateChannel:=true; {stub behavior}
end;

2-6

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

FifoReset

This command resets the FIFO's internal address by writing a "1" bit
into the FIFO control register located 2 bytes above the channel base
address. Remember that physical addresses are in "byte space". The
adjacent 16 bit word in "word space" is 2 bytes away.

Pascal Implementation

procedure FifoReset;
begin
PortW[FifoAddress+2]:=1;
end;

FifoWriteWord

This command appends a 16 bit word value to the FIFO contents.

Pascal Implementation

procedure FifoWriteWord(Value:word);
 begin
 PortW[FifoAddress]:=Value;
 end;

FifoWriteInteger

This command does the same operation as FifoWriteWord with the
convenience of a typecast.

Pascal Implementation

procedure FifoWriteInteger(Value:integer);
 begin
 PortW[FifoAddress]:=Value;
 end;

2-7

2Binary Communication Protocol

FifoWriteBoolean

Booleans are represented as 16 bit values that are either 0, representing
false, or all 1s, ($FFFF) representing true. Other values should be
regarded as illegal values.

Pascal Implementation

procedure FifoWriteBoolean(ParamIsTrue:boolean);
 begin
 if ParamIsTrue then
 PortW[FifoAddress]:=$FFFF
 else
 PortW[FifoAddress]:=0;
 end;

FifoWriteLongint

Following the Intel heritage of "little endian", the low word is submit-
ted to the FIFO first followed by the high word. This presumes the
functions LowWord and HiWord such as found in the Windows API,
or the use of a record "overlay" which provides access to the internal
structure of the longint data.

Pascal Implementation

Type TLongintToInteger=record
 LowInteger:integer;
 HighInteger:integer;
 end;

procedure FifoWriteLongint(Value:longint);
 begin
 PortW[FifoAddress]:=

TLongintToInteger(Value).LowInteger;
 PortW[FifoAddress]:=

TLongintToInteger(Value).HighInteger;
 end;

2-8

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

FifoWriteSingle

Singles are 32 bit floating point values. These are sent little end first
also.

Pascal Implementation

procedure FifoWriteSingle(Value:single);
begin
PortW[FifoAddress]:=

TLongintToInteger(longint(Value)).LowInteger;
PortW[FifoAddress]:=

TLongintToInteger(
longint(Value)).HighInteger;

 end;

FifoSendMessageAndWaitForResponse;

The simplest way to communicate to MotionServer is to prepare a
message, send the message, and wait for the answer. This procedure
performs these steps. Based on exception handling capabilities of your
language system it may be advisable to place a timeout in the loop
waiting for the controller's response. Note that some commands can
take as long as a physical movement (i.e. T1AxisMoveBy). Timeout
durations would need to take this into account.

Pascal Implementation

procedure FifoSendMessageAndWaitForResponse;

var UnusedWord:word;
var UserNumber:integer;

begin
{clear possibly pending response}
UnusedWord:=PortW[FifoAddress];
{Set message send flag}
PortW[FifoAddress+2]:=2;
repeat

{do nothing except possibly manage a timeout}
until (PortW[FifoAddress+2] and 1) = 1;

{reset fifo so as to read from start}
PortW[FifoAddress+2]:=1;
end;

2-9

2Binary Communication Protocol

FifoReadWord

This function assumes that the host has identified information avail-
able to read in the FIFO and returns the next 16 bits as a word.

Pascal Implementation

function FifoReadWord:integer;
begin
FifoReadWord:=Portw[FifoAddress];
end;

FifoReadInteger

This function assumes that the host has identified information avail-
able to read in the FIFO and returns the next 16 bits as an integer.

Pascal Implementation

function FifoReadInteger:integer;
begin
FifoReadInteger:=Portw[FifoAddress];
end;

FifoReadBoolean

This function assumes that the host has identified information avail-
able to read in the FIFO and interprets the next 16 bits as boolean.

Pascal Implementation

function FifoReadBoolean:boolean;
begin
if FifoReadWord=0 then

FifoReadBoolean:=false
else

FifoReadBoolean:=true;
end;

2-10

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

FifoReadLongint

This function assumes that the host has identified information avail-
able to read in the FIFO and interprets the next 32 bits as longint with
the "little end" being read first.

Pascal Implementation

function FifoReadLongint:longint;

var Answer:longint;

begin
TLongintToInteger(Answer).LowInteger:=

FifoReadWord;
TLongintToInteger(Answer).HighInteger:=

FifoReadWord;
FifoReadLongint:=Answer;
end;

General Command Abstraction
Commands are sent in various "patterns" that can be shared across
commands. The following section discusses the general structure of
sending and receiving messages as well as more specific structures that
are used multiple times in the command set.

Transmit Structure

The next level of communication can be built using the hardware fifo
abstraction. Messages have the following general format:

• Command ID (16 bit number)
• Command Parameters (various number and type)

When dealing with motor operations the format becomes more
specifically the following

• Command ID (16 bit number)
• AxisNumber or GroupNumber (16 bit number)
• Command Parameters (various number and type)

AxisNumbers are in the range 1 to 16 and represent the motors in the
system. GroupNumbers are provided by the routines T2AxisInit,
T3AxisInit, T4AxisInit, T5AxisInit, and T6AxisInit. These routines
take a list of AxisNumbers and return a unique GroupNumber or

2-11

2Binary Communication Protocol

"handle" to the collection described. Coordinated motion commands
then operate on this defined group.

In many cases, GroupNumbers and AxisNumbers can be inter-
changed. For example the command SetMotor, which turns a motor
on or off, operates on a single motor if the GroupNumber parameters
is in the range 1 to 16, or operates on all the motors in a group as a set.

Command Ids are DECLARED in the BINARY.INC include file.
Command Ids have the form bc_XXXXX where "bc" stands for
binary command, and XXXXX is replaced by the corresponding
command name shown in Chapter 3. DO NOT CIRCUMVENT
THE CONSTANT INCLUDE FILE AND USE LITERAL COM-
MAND NUMBERS. Douloi reserves the right to update command-
value associations at a future time along with updated include files.
Any hard-coded Command Ids will reference the wrong commands.

Response Structure

Responses have the following structure:

• Error Code (16 bit value)
• Additional Response Data (various types)

Error codes are elaborated in the error code listing in the include files.
An error code of 0 indicates no problem has occurred and that associ-
ated response information is valid. How much response information
to gather depends on the command that requested that data. There is
no "end of data" information in the response. If the error code is not 0,
the associated data is not valid.

2-12

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

dms_Procedure

dms_Procedure is the simplest case. A global "dmsErrorCode" is used
to record any problem that may occur during command processing. If
an error has occurred, the commands are ignored (through the early
exit) rather than operative on a system which has sustained an error
response. In this case, there is no parameter information that accom-
panies the commands.

procedure dms_Procedure(CommandNumber:integer);
begin
if ErrorCode <> 0 then

exit;
FifoReset;
FifoWriteWord(CommandNumber);
FifoSendMessageandWaitForResponse;
ErrorCode:=FifoReadWord;
end;

dms_BooleanFunction

The dms_BooleanFunction represents the simplest case of getting an
answer back from Motion Server. In the event that an error has
occurred, the routine exits immediately and returns a value of false.

function dms_BooleanFunction(
CommandNumber:word):boolean;

begin
if ErrorCode <> 0 then

begin
dms_BooleanFunction:=false;
exit;
end;

FifoReset;
FifoWriteWord(CommandNumber);
FifoSendMessageandWaitForResponse;
ErrorCode:=FifoReadWord;
if ErrorCode= 0 then

dms_BooleanFunction:=FifoReadBoolean
else

dms_BooleanFunction:=false;
end;

2-13

2Binary Communication Protocol

dms_AxisProcedure

Most of the routines involve communicating to axes. These routines
begin with dms_Axis... to indicate that they include an AxisNumber
or a GroupNumber in their parameter list for referring to motors.
This axis-indicating parameter is immediately after the command
number and is written as a 16 bit value.

procedure dms_AxisProcedure(
CommandNumber:integer; GroupNumber:integer);
begin
if ErrorCode <> 0 then

exit;
FifoReset;
FifoWriteWord(CommandNumber);
FifoWriteWord(GroupNumber);
FifoSendMessageandWaitForResponse;
ErrorCode:=FifoReadWord;
end;

dms_AxisProcedureIntegerParam

This routine is used to send to a particular axis or axis group an integer
parameter.

procedure dms_AxisProcedureIntegerParam(
CommandNumber:integer;
GroupNumber:integer;
Param:Integer);

begin
if ErrorCode <> 0 then

exit;
FifoReset;
FifoWriteWord(CommandNumber);
FifoWriteWord(GroupNumber);
FifoWriteInteger(Param);
FifoSendMessageandWaitForResponse;
ErrorCode:=FifoReadWord;
end;

2-14

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

dms_AxisProcedureLongintParam

The following routines sends messages which involve axis information
and a 32 bit longint parameter.

procedure dms_AxisProcedureLongintParam(
CommandNumber:integer;
GroupNumber:integer;
Param:longint);

begin
if ErrorCode <> 0 then

exit;
FifoReset;
FifoWriteWord(CommandNumber);
FifoWriteWord(GroupNumber);
FifoWriteLongint(Param);
FifoSendMessageandWaitForResponse;
ErrorCode:=FifoReadWord;
end;

dms_AxisProcedureBooleanParam

Axis often require boolean parameters to turn control functions on
and off. This procedure provides a boolean parameter written as a 16
bit value.

procedure dms_AxisProcedureBooleanParam(
CommandNumber:integer;
GroupNumber:integer;
Param:Boolean);

begin
if ErrorCode <> 0 then

exit;
FifoReset;
FifoWriteWord(CommandNumber);
FifoWriteWord(GroupNumber);
FifoWriteBoolean(Param);
FifoSendMessageandWaitForResponse;
ErrorCode:=FifoReadWord;
end;

2-15

2Binary Communication Protocol

dms_AxisIntegerFunction

The following integer function is used to return 16 bit information
from a particular axis, such as the CommandedTorque.

function dms_AxisIntegerFunction(
CommandNumber:integer;
GroupNumber:integer):longint;

begin
if ErrorCode <> 0 then

begin
dms_AxisIntegerFunction:=0;
exit;
end;

FifoReset;
FifoWriteWord(CommandNumber);
FifoWriteWord(GroupNumber);
FifoSendMessageandWaitForResponse;
ErrorCode:=FifoReadWord;
if ErrorCode=0 then

dms_AxisIntegerFunction:=FifoReadInteger
else

dms_AxisIntegerFunction:=0;
end;

dms_AxisLongintFunction

Many axis functions return 32 bits of information. This routine serves
as a common pattern for axis commands such as ActualPosition and
ErrorPosition.

function dms_AxisLongintFunction(
CommandNumber:integer;
GroupNumber:integer):longint;

begin
if ErrorCode <> 0 then

exit;
FifoReset;
FifoWriteWord(CommandNumber);
FifoWriteWord(GroupNumber);
FifoSendMessageandWaitForResponse;
ErrorCode:=FifoReadWord;
if ErrorCode=0 then

dms_AxisLongintFunction:=FifoReadLongint
else

dms_AxisLongintFunction:=0;
end;

2-16

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

dms_AxisBooleanFunction

Boolean answers regarding motor condition are answered through the
following function. Commands that make use of this function format
include MotorIsOn and MoveIsFinished.

function dms_AxisBooleanFunction(
CommandNumber:integer;
GroupNumber:integer):boolean;

begin
if ErrorCode <> 0 then

exit;
FifoReset;
FifoWriteWord(CommandNumber);
FifoWriteWord(GroupNumber);
FifoSendMessageandWaitForResponse;
ErrorCode:=FifoReadWord;
if ErrorCode=0 then

dms_AxisBooleanFunction:=FifoReadBoolean
else

dms_AxisBooleanFunction:=false;
end;

dms_T2AxisVectorProcedure

Certain groups of commands involve sending a set of 32 bit param-
eters to an axis group. Most often this information has to do with
coordinated positioning. The following procedure manages a 2 di-
mensional transfer. After writing the command number and the group
number, the parameters are written in order to complete the message.

procedure dms_T2AxisVectorProcedure(
CommandNumber:integer;
GroupNumber:integer;
Param1:longint;
Param2:longint);

 begin
 if ErrorCode <> 0 then
 exit;
 FifoReset;
 FifoWriteWord(CommandNumber);
 FifoWriteWord(GroupNumber);
 FifoWriteLongint(Param1);
 FifoWriteLongint(Param2);
 FifoSendMessageandWaitForResponse;
 ErrorCode:=FifoReadWord;
 end;

2-17

2Binary Communication Protocol

dms_T3AxisVectorProcedure

This procedure provides 3 longints of parameter information for use
with 3 dimensional motion.

procedure dms_T3AxisVectorProcedure(
CommandNumber:integer;
GroupNumber:integer;
Param1:longint;
Param2:longint;
Param3:longint);

begin
if ErrorCode <> 0 then

exit;
FifoReset;
FifoWriteWord(CommandNumber);
FifoWriteWord(GroupNumber);
FifoWriteLongint(Param1);
FifoWriteLongint(Param2);
FifoWriteLongint(Param3);
FifoSendMessageandWaitForResponse;
ErrorCode:=FifoReadWord;
end;

dms_T4AxisVectorProcedure
procedure dms_T4AxisVectorProcedure(

CommandNumber:integer;
GroupNumber:integer;
Param1:longint;
Param2:longint;
Param3:longint;
Param4:longint);

begin
if ErrorCode <> 0 then

exit;
FifoReset;
FifoWriteWord(CommandNumber);
FifoWriteWord(GroupNumber);
FifoWriteLongint(Param1);
FifoWriteLongint(Param2);
FifoWriteLongint(Param3);
FifoWriteLongint(Param4);
FifoSendMessageandWaitForResponse;
ErrorCode:=FifoReadWord;
end;

2-18

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

dms_T5AxisVectorProcedure

This 5 parameter procedure helps manage 5 dimensional motion.

procedure dms_T5AxisVectorProcedure(
CommandNumber:integer;
GroupNumber:integer;
Param1:longint;
Param2:longint;
Param3:longint;
Param4:longint;
Param5:longint);

begin
if ErrorCode <> 0 then

exit;
FifoReset;
FifoWriteWord(CommandNumber);
FifoWriteWord(GroupNumber);
FifoWriteLongint(Param1);
FifoWriteLongint(Param2);
FifoWriteLongint(Param3);
FifoWriteLongint(Param4);
FifoWriteLongint(Param5);
FifoSendMessageandWaitForResponse;
ErrorCode:=FifoReadWord;
end;

2-19

2Binary Communication Protocol

dms_T6AxisVectorProcedure
procedure dms_T6AxisVectorProcedure(

CommandNumber:integer;
GroupNumber:integer;
Param1:longint;
Param2:longint;
Param3:longint;
Param4:longint;
Param5:longint;
Param6:longint);

begin
if ErrorCode <> 0 then

exit;
FifoReset;
FifoWriteWord(CommandNumber);
FifoWriteWord(GroupNumber);
FifoWriteLongint(Param1);
FifoWriteLongint(Param2);
FifoWriteLongint(Param3);
FifoWriteLongint(Param4);
FifoWriteLongint(Param5);
FifoWriteLongint(Param6);
FifoSendMessageandWaitForResponse;
ErrorCode:=FifoReadWord;

 end;

2-20

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

3-1

3Chapter

3) Command Reference

Command Summary

Notes
Commands are shown by name. Command names in the DLL are prefixed with "dms_" to insure
uniqueness. When used with the ActiveX control, the names are proceeded by the Control name which
is generally "MSB" followed by a period.

DLL Specific Commands
AllocateChannel Performs initialization steps for DLL and make connection

ActiveX Specific Commands
Init ... Initializes communication resources in ActiveX control
SetBuffer .. Turns on or off command buffering for higher throughput
PerformBuffer Performs command buffer when buffering is on
Busy .. Indicates that command buffer is still busy performing commands

Communications
ErrorCode .. Returns the result of the last command after completed

IO Operations
InputBit .. Return level of specified input
ConfigureIOBitAsOutput Instructs I/O bit to behave as output signal
SetOutputEnable Tell output bits to become active (DMS only)
SetOutputBit Change state of output bit on hardware

Safety
ResetWatchdog Allow tripped safety system to resume servo activity
WatchdogHasTripped Returns status of watchdog system
UserHasDisabled Indicates if any disable input is asserted

Axis and AxisGroup Commands
Configuration
T2AxisInit ... Associate 2 axes into coordinated group
T3AxisInit ... Associate 3 axes into coordinated group
T4AxisInit ... Associate 4 axes into coordinated group
T5AxisInit ... Associate 5 axes into coordinated group

3-2

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

T6AxisInit ... Associate 6 axes into coordinated group
TNAxisDispose................................ Release axis group relationship
ResetAllocation Clear all group relationships
SetMotorType Configures motor for servo or stepper operation
SetEnable .. Allow amplifier to power motor
SetMotor .. Turns motor operation on and off
SetLoopInversion Include an additional sign inversion in control law
SetCoordinateInversion Reverse which way is regarded as the positive direction
SetAccel .. Set acceleration rate for trapezoidal moves
SetDecel .. deceleration rate for trapezoidal moves
SetSpeed ... Set speed of slew phase of trapezoidal moves
SetGain ... Set compensation parameter for servo
SetZero ... compensation parameter for servo
SetIntegrator compensation parameter to eliminate steady state position error
SetErrorLimit Set permissible tracking error before disable occurs
SetPositiveLimit Set boundary for movement in the positive direction
SetNegativeLimit Set boundary for movement in the negative direction
SetActualPosition Define current position coordinate
SetCommandedPosition Set commanded position for non-trapezoidal moves
ArmInputCapture Prepares axis to latch position based on input signal
ArmIndexCapture Prepares axis to latch position based on index signal
SetCommandedTorque Set output voltage when not servoing

Motion
TNAxisMoveTo Move to absolute coordinate
TNAxisMoveBy Move to relative coordinate
TNAxisBeginMoveTo Start move to absolute coordinate
TNAxisBeginMoveBy Start move to relative coordinate
MoveAlongCurve Perform coordinated multiaxis motion along curve
BeginMoveAlongCurve Begin coordinated curved motion
TNAxisAppendMoveTo Add absolute vector segment to curve description
TNAxisAppendMoveBy Add vector segment to curve description relative to last segment
TNAxisAppendArc Add circular or helical arc description to continuous path curve
Clear ... Erase any established motion curve info
TNAxisLinkToBuffer Assocate curve buffer with axis group
Jog ... Move indefintely at constant speed
Stop ... Gently stops any motion that may be in progress
BeginStop ... Begins to stop but immediately does next instruction
Abort ... Suddenly aborts any motion that my be in progress

Query
Gain... Return current compensator gain value
Zero .. Return current compensator zero value
Integrator .. Return current compensator integrator value
Accel .. Return current acceleration in counts per second squared
Decel ... Return current deceleration in counts per second squared
Speed .. Return current speed in counts per second
ActualPosition Return current actual motor position
CommandedPosition Return ideal or target position for motor

3-3

3Command Reference

DestinationPosition Return absolute coordinate of end of move
ErrorPosition Return discrepency between current and ideal position
CapturePosition Return position recorded when latch event occurred
MoveIsFinished................................ Return true if move has finished
CommandedTorque Return current analog output value
ProfileVelocity Return current ideal profile velocity
CaptureHasTripped Indicate if latch event has occurred
MotorIsOn Return true if motor is currently powered and active
EnableIsOn Return true if amplifier is powered
IBit .. Return level of encoder index signal
ABit ... Return level of encoder A channel
BBit ... Return level of encoder B channel

User Task Control
BeginUserTask Spawn independent application behavior in controller
ScheduleUserTask Spawn periodically recurring independent behavior in controller
AbortUserTask Terminate an independent behavior in controller
SuspendUserTask Cause independent behavior in controller to become inactive
ResumeUserTask Cause suspended activity to become active again
UserTaskPresent Indicates if particular task is currently present in controller

User Variable Control
SetUserBoolean Assigns user variable in controller
SetUserLongint Assigns user variable in controller
SetUserSingle Assigns user variable in controller
UserBoolean..................................... Retreives user variable from controller
UserLongint Retreives user variable from controller
UserSingle .. Retreives user variable from controller

3-4

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

ABit

ActiveX Syntax
Public Function ABit(ByVal AxisNumber as Integer) As Boolean

C Syntax
long dms_ABit(int AxisNumber);

Pascal Syntax
function dms_ABit(AxisNumber:integer):longint;

Description
dms_Abit returns the high/low level of the encoder A channel for the specified axis. If the axis is not using
the encoder, the A, B, and I signals can be used as general purpose inputs. It is also useful to use dms_ABit
function to check the operation of an encoder. A constantly high or low level, regardless of encoder
rotation, can indicate a broken encoder or wire. AxisNumber must be in the range 1 to 16.

Binary Command Implementation
function dms_ABit(AxisNumber:integer):longint;

begin
dms_ABit:=dms_AxisLongintFunction(bc_ABit,AxisNumber);
end;

ActiveX Example
if Msb.Abit(1) then

MsgBox "Axis 1 Encoder Signal A is high"
End If

See Also
dms_BBit
dms_IBit
dms_CaptureBit

3-5

3Command Reference

Abort

ActiveX Syntax
Public sub Abort(ByVal GroupNumber as Integer)

C Syntax
void dms_Abort(int GroupNumber)

Pascal Syntax
procedure dms_Abort(GroupNumber:integer);

Description
Abort immediately and abruptly stops motion without a controlled decel. Abort is generally for
emergency use. Note that an abort at high speeds will most likely cause a servo tracking error resulting
in the servos shutting down. This problem can be solved by increasing the error limit with SetErrorLimit
or using the dms_Stop command instead.

Binary Command Implementation
procedure dms_Abort(GroupNumber:integer);

begin
dms_AxisProcedure(bc_Abort,GroupNumber);
end;

ActiveX Example
Msb.Abort 1 'Aborts motion on X axis
Msb.Abort XYPair 'Group number references Coordinated pair
Msb.PerformBuffer

See Also
BeginStop
Stop

3-6

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

Accel

ActiveX Syntax
Public Function Accel(ByVal GroupNumber as Integer) As Long

C Syntax
long dms_Accel(int GroupNumber)

Pascal Syntax
function dms_Accel(GroupNumber:integer):longint;

Description
Accel returns the current setting of the acceleration that will be used by this axis group during trapezoidal
moves. The units are in counts per second squared.

Binary Command Implementation
function dms_Accel(GroupNumber:integer):longint;

begin
dms_Accel:=dms_AxisLongintFunction(bc_Accel,GroupNumber);
end;

ActiveX Example
Status.Caption=Msb.Accel(1)

SeeAlso
TNAxis.Decel
TNAxis.Speed
TNAxis.SetAccel
TNAxis.SetDecel
TNAxis.SetSpeed

3-7

3Command Reference

ActualPosition

ActiveX Syntax
Public Function ActualPosition(ByVal AxisNumber as Integer) As Long

C Syntax
long dms_ActualPosition(int AxisNumber)

Pascal Syntax
function dms_ActualPosition(AxisNumber:integer):longint;

Description
ActualPosition returns the current position coordinate of the T1Axis receiver. This is often used when
producing plots of the dynamic response of the motor. Note that this may well be different from the
CommandedPosition of the motor, ie the theoretical position of where the motor should be. In some
cases it may be more desirable to use the CommandedPosition rather than the Actual position. The value
returned is in units of counts.SeeAlso

Binary Command Implementation
function dms_ActualPosition(AxisNumber:integer):longint;

begin
dms_ActualPosition:=

dms_AxisLongintFunction(bc_ActualPosition,AxisNumber);
end;

ActiveX Example
Status.Caption=Msb.ActualPosition(2)

See Also
CommandedPosition

3-8

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

ArmCompare

ActiveX Syntax
Public Sub ArmCompare(ByVal AxisNumber as Integer)

C Syntax
void dms_ArmCompare(int AxisNumber, int State)

Pascal Syntax
procedure dms_ArmCompare(AxisNumber:integer; State:boolean);

Description
The procedure dms_ArmCompare is used to prepare the compare bit for transitioning at a specific
compare position. This high-speed compare function is the opposite of capture operation. During
capture, the encoder position is recorded when an external hardware event occurs. During high speed
compare, an output bit is changed when the encoder realizes a specific position established with the
dms_SetComparePosition command. The boolean parameter to dms_ArmCompare is used to establish
the initial, pre-triggered state of the compare output.

Binary Command Implementation
procedure dms_ArmCompare(AxisNumber:integer; State:boolean);

begin
dms_AxisProcedureBooleanParam(bc_ArmCompare,AxisNumber,State);
end;

ActiveX Example
Msb.ArmComare 2

Example
dms_SetComparePosition(1,4000);
dms_ArmCompare(false); {compare output signal now low}

See Also
dms_SetComparePosition

3-9

3Command Reference

ArmIndexCapture

ActiveX Syntax
Public Sub ArmIndexCapture(ByVal AxisNumber as Integer)

C Syntax
void dms_ArmIndexCapture(int AxisNumber)

Pascal Syntax
procedure dms_ArmIndexCapture(AxisNumber:integer);

Description
ArmIndexCapture is used to setup the system to respond to an index pulse that is anticipated.
ArmIndexCapture resets the capture latches for the axis associated with the TNAxis machine. When
CaptureHasTripped the CapturePosition information is valid and can be used by the motion application.

Binary Command Implementation
procedure dms_ArmIndexCapture(AxisNumber:integer);

begin
dms_AxisProcedure(bc_ArmIndexCapture,AxisNumber);
end;

ActiveX Example
Msb.ArmIndexCapture 4

See Also
ArmInputCapture
Capture
CaptureHasTripped
CapturePosition

3-10

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

ArmInputCapture

ActiveX Syntax
Public Sub ArmInputCapture(ByVal AxisNumber as Integer)

C Syntax
void dms_ArmInputCapture(int AxisNumber)

Pascal Syntax
procedure dms_ArmInputCapture(AxisNumber:integer);

Description
ArmInputCapture is used to setup the system to respond to an input pulse that is anticipated.
ArmInputCapture resets the capture latches for the axis associated with the TNAxis machine. When
CaptureHasTripped the CapturePosition information is valid and can be used by the motion application.
Each axis has a specific input used for high speed capture.

Binary Command Implementation
procedure dms_ArmInputCapture(AxisNumber:integer);

begin
dms_AxisProcedure(bc_ArmInputCapture,AxisNumber);
end;

ActiveX Example
Msb.ArmInputCapture 2

See Also
Capture Inputs
ArmInputCapture
Capture
Capture Inputs
CaptureHasTripped
CapturePosition

3-11

3Command Reference

BBit

ActiveX Syntax
Public Function BBit(ByVal AxisNumber as Integer) As Boolean

C Syntax
long dms_BBit(int AxisNumber);

Pascal Syntax
function dms_BBit(AxisNumber:integer):longint;

Description
dms_Bbit returns the high/low level of the encoder B channel for the specified axis. If the axis is not using
the encoder, the A, B, and I signals can be used as general purpose inputs. It is also useful to use dms_BBit
function to check the operation of an encoder. A constantly high or low level, regardless of encoder
rotation, can indicate a broken encoder or wire. AxisNumber must be in the range 1 to 16.

Binary Command Implementation
function dms_BBit(AxisNumber:integer):longint;

begin
dms_BBit:=dms_AxisLongintFunction(bc_BBit,AxisNumber);
end;

ActiveX Example
Status.Caption=Msb.BBit(2)

See Also
dms_BBit
dms_IBit
dms_CaptureBit

3-12

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

BeginMoveAlongCurve

ActiveX Syntax
Public Sub BeginMoveAlongCurve(ByVal GroupNumber as Integer)

C Syntax
void dms_BeginMoveAlongCurve(int GroupNumber)

Pascal Syntax
dms_AxisProcedure(bc_BeginMoveAlongCurve,GroupNumber);

Description
BeginMoveAlongCurve performs continuous path motion over an arbitrary, multiaxis curve description
which was previously setup. This routine is not implemented by a T1Axis single axis. Program execution
immediately continues after the motion has started.

Binary Command Implementation
procedure dms_BeginMoveAlongCurve(GroupNumber:integer);

begin
dms_AxisProcedure(bc_BeginMoveAlongCurve,GroupNumber);
end;

ActiveX Example
Msb.BeginMoveAlongCurve XYTable

SeeAlso
Curved Trajectories
TNAxis.MoveAlongCurve
TNAxis.MoveIsFinished

3-13

3Command Reference

BeginUserTask

ActiveX Syntax
Public Sub BeginUserTask(ByVal TaskNumber as Integer)

C Syntax
void dms_BeginUserTask(int TaskNumber)

Pascal Syntax
procedure dms_BeginUserTask(TaskNumber:integer);

Description
BeginUserTask causes an application task in the controller to begin executing as an independent thread.
Tasks are saved in controller FLASH memory through the use of the SAVE_APP catalog component.
It is necessary to "connect" application tasks to user task numbers through an assignment procedure for
access through the binary command interpreter. Consult the chapter on "Using Flash Memory" for more
information.

Binary Command Implementation
procedure dms_BeginUserTask(TaskNumber:integer);

begin dms_ProcedureIntegerParam(bc_BeginUserTask,TaskNumber);

end;

ActiveX Example
Msb.BeginUserTask 12

See Also
dms_AbortUserTask
dms_ScheduleUserTask
dms_UserTaskPresent
dms_SuspendUserTask
dms_ResumeUserTask

3-14

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

BeginStop

ActiveX Syntax
Public Sub BeginStop(ByVal GroupNumber as Integer)

C Syntax
void dms_BeginStop(int GroupNumber)

Pascal Syntax
procedure dms_BeginStop(GroupNumber:integer);

Description
BeginStop directs the axis group to slow down at the specified decel rate and stop motion. A TNAxis
group will remain coordinated during the stop. The calling program will not wait until after the stop has
finished before continuing but will immediately execute the next statement.

Binary Command Implementation
procedure dms_BeginStop(GroupNumber:integer);

begin
dms_AxisProcedure(bc_BeginStop,GroupNumber);
end;

ActiveX Example
Msb.BeginStop 2

See Also
TNAxis.Stop
TNAxis.Abort

3-15

3Command Reference

Busy

ActiveX Syntax
Public Function Busy() As Boolean

Description
Buffered commands sent to the controller may take some time to execute, particularly if the command
buffer uses commands such as Delay or MoveTo where the next command in the buffer is not
performed until the prior delay or move finishes completely. It is necessary to use the Busy function to
make sure that the command buffer has finished before submitting new commands.

ActiveX Example
while Msb.Busy
 DoEvents
WEnd
Msb.T1AxisBeginMoveT0, 1, 50000

3-16

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

CaptureBit

ActiveX Syntax
Public Function CaptureBit(ByVal AxisNumber as Integer) As Boolean

C Syntax
long dms_CaptureBit(int AxisNumber);

Pascal Syntax
function dms_CaptureBit(AxisNumber:integer):longint;

Description
dms_Capturebit returns the high/low level of the capture signal for the specified axis. The capture signal,
when used in conjunction with the dms_SetCaptureTrip, dms_ArmInputCapture, and
dms_CaptureHasTripped functions provides latching of the encoder position on an input event.
However the signal can also be used as a general purpose input or homing input through the use of the
dms_CaptureBit command which returns the current level.

Binary Command Implementation
function dms_CaptureBit(AxisNumber:integer):longint;

begin
dms_CaptureBit:=

dms_AxisLongintFunction(bc_CaptureBit,AxisNumber);
end;

ActiveX Example
Status.Caption=MSb.CaptureBit(2)

See Also
dms_ABit
dms_BBit
dms_IBit
dms_SetCaptureTrip
dms_ArmInputCapture
dms_CaptureHasTripped

3-17

3Command Reference

CaptureHasTripped

ActiveX Syntax
Public Function CaptureHasTripped(ByVal AxisNumber as Integer) As
Boolean

C Syntax
int dms_CaptureHasTripped(int AxisNumber)

Pascal Syntax
function dms_CaptureHasTripped(AxisNumber:integer):boolean;

Description
CaptureHasTripped returns true if the index or input event, configure by ArmIndexCapture or
ArmInputCapture, has occurred. If CaptureHasTripped then CapturePosition is valid and contains the
position where the event occurred.

Binary Command Implementation
function dms_CaptureHasTripped(AxisNumber:integer):boolean;

begin
dms_CaptureHasTripped:=

dms_AxisBooleanFunction(bc_CaptureHasTripped,AxisNumber);
end;

ActiveX Example
Status.Caption=Msb.CaptureHasTripped(2)

See Also
TNAxis.ArmInputCapture
TNAxis.ArmIndexCapture

3-18

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

CapturePosition

ActiveX Syntax
Public Function CapturePosition(ByVal AxisNumber as Integer) As Long

C Syntax
long dms_CapturePosition(int AxisNumber)

Pascal Syntax
function dms_CapturePosition(AxisNumber:integer):longint;

Description
CapturePosition returns the position the axis experienced the capture event, either an index pulse of an
input, which was anticipated using the ArmIndexCapture or ArmInputCapture instructions. The
CapturePosition is only valid if CaptureHasTripped.

Binary Command Implementation
function dms_CapturePosition(AxisNumber:integer):longint;

begin
dms_CapturePosition:=

dms_AxisLongintFunction(bc_CapturePosition,AxisNumber);
end;

ActiveX Example
Status.Caption=Msb.CapturePosition(2)

See Also
ArmIndexCapture
ArmInputCapture
Capture
Capture Inputs
CaptureHasTripped

3-19

3Command Reference

Clear

ActiveX Syntax
Public Sub Clear(ByVal GroupNumber as Integer)

C Syntax
void dms_Clear(int GroupNumber)

Pascal Syntax
procedure dms_Clear(GroupNumber:integer);

Description
dms_Clear removes any previous curve information and prepares the TNAxis to receive a new curve
description with Append commands..

Binary Command Implementation
procedure dms_Clear(GroupNumber:integer);

begin
dms_AxisProcedure(bc_Clear,GroupNumber);
end;

ActiveX Example
Msb.Clear XYTable

SeeAlso
Curved Trajectories
TNAxis.MoveAlongCurve
TNAxis.AppendMoveBy
TNAxis.AppendMoveTo
TNAxis.AppendMoveToVector
TNAxis.AppendMoveBy
TNAxis.AppendMoveByVector

3-20

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

CommandedPosition

ActiveX Syntax
Public Function CommandedPosition(ByVal AxisNumber as Integer) As Long

C Syntax
long dms_CommandedPosition(int GroupNumber)

Pascal Syntax
function dms_CommandedPosition(GroupNumber:integer):longint;

Description
CommandedPosition returns the theoretical position of the motor, i.e. the desired position of the
motor. During the course of a profiled motion this number will smoothly change to represent the
trajectory of the motor. Actual motor trajectory will differ from this theoretical expectation due to
system dynamics and power limits realized in physical, real-world machines. The commanded position
only exists when the motor is servoing. If the servo is not active the CommandedPosition is a
meaningless number. For multidimensional axis groups the commanded position is the vector path
length into the move or curve relative to the beginning of the curve. This can be used to perform events
at particular positions along a multidimensional trajectory.

Binary Command Implementation
function dms_CommandedPosition(GroupNumber:integer):longint;

begin
dms_CommandedPosition:=

dms_AxisLongintFunction(bc_CommandedPosition,GroupNumber);
end;

ActiveX Example
Status.Caption=Msb.CommandedPosition(2)

See Also
T1Axis.ActualPosition
TNAxis.GetActualPositionVector
TNAxis.GetCommandedPositionVector

3-21

3Command Reference

CommandedTorque

ActiveX Syntax
Public Function CommandedTorque(ByVal AxisNumber as Integer) As
Integer

C Syntax
int dms_CommandedTorque(int AxisNumber)

Pascal Syntax
function dms_CommandedTorque(AxisNumber:integer):integer;

Description
CommandedTorque returns the current amount of torque the servo controller is requesting for the
receiving axis. This information is returned as an integer and is in the range of MaxTorque to
MinTorque. This function can be used to determine if the axis is continually applying torque to a load
or undergoing saturation, (ie constantly requesting the maximum or minimum torque).

Binary Command Implementation
function dms_CommandedTorque(AxisNumber:integer):integer;

begin
dms_CommandedTorque:=

dms_AxisIntegerFunction(bc_CommandedTorque,AxisNumber);
end;

ActiveX Example
Status.Caption=Msb.CommandedTorque(1)

SeeAlso
T1Axis.SetCommandedTorque

3-22

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

ConfigureIOBitAsOutput

ActiveX Syntax
Public Sub ConfigureIOBitAsOutpout(ByVal BitNumber as Integer, Param
as boolean)

C Syntax
void dms_ConfigureIOBitAsOutput(int BitNumber, int Param)

Pascal Syntax
procedure dms_ConfigureIOBitAsOutput(Bit:integer; IsOut:boolean);

Description
Motion Server I/O can be configured as inputs or outputs in 4-bit nibble sized groups. Groups are
indicated in the connector diagram later in this document. After reset I/O defaults to inputs with 4.7k
pullups to prevent asserting an active output signal. Nibble-groups can become outputs by using this
command with the Bit parameter being the bit number of any bit in the group, and the IsOut parameter
being set to "true". An output group can become an input group by indicating IsOut as false.

Binary Command Implementation
procedure dms_ConfigureIOBitAsOutput(Bit:integer; Param:boolean);

begin
if ErrorCode <> 0 then

exit;
FifoReset;
FifoWriteWord(bc_ConfigureIOBitAsOutput);
FifoWriteWord(Bit);
FifoWriteBoolean(Param);
FifoSendMessageandWaitForResponse;
ErrorCode:=FifoReadWord;
end;

ActiveX Example
Msb.ConfigureIOBitAsOutput 1,True

SeeAlso
dms_SetOutputBit
dms_SetOutputEnable

3-23

3Command Reference

Decel

ActiveX Syntax
Public Function Decel(ByVal AxisNumber as Integer) As Long

C Syntax
long dms_Decel(int GroupNumber)

Pascal Syntax
function dms_Decel(GroupNumber:integer):longint;

Description
Decel returns the current setting of the deceleration that will be used by this axis group during
trapezoidal moves. The units are in counts per second squared.

Binary Command Implementation
function dms_Decel(GroupNumber:integer):longint;

begin
dms_Decel:=

dms_AxisLongintFunction(bc_Decel,GroupNumber);
end;

ActiveX Example
Status.Caption=Msb.Decel(2)

SeeAlso
TNAxis.Accel
TNAxis.Speed
TNAxis.SetAccel
TNAxis.SetDecel
TNAxis.SetSpeed

3-24

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

DestinationPosition

ActiveX Syntax
Public Function DestinationPosition(ByVal AxisNumber as Integer) As
Long

C Syntax
long dms_DestinationPosition(int AxisNumber)

Pascal Syntax
function dms_DestinationPosition(AxisNumber:integer):longint;

Description
DestinationPosition returns the absolute coordinate of where a move will finish. This can be used to
calculate the distance remaining in a move, move often used to overlap motion and reduce cycle time.

Binary Command Implementation
function dms_DestinationPosition(AxisNumber:integer):longint;

begin
dms_DestinationPosition:=

dms_AxisLongintFunction(bc_DestinationPosition,AxisNumber);
end;

ActiveX Example
Status.Caption=Msb.DestinationPosition(2)

See Also
CommandedPosition
ActualPosition

3-25

3Command Reference

EnableIsOn

ActiveX Syntax
Public Function EnableIsOn(ByVal GroupNumber as Integer) As Boolean

C Syntax
int dms_EnableIsOn(int GroupNumber)

Pascal Syntax
function dms_EnableIsOn(GroupNumber:integer):boolean;

Description
EnableIsOn returns true (non-0) if all of the axis in the axis group are enabled. This should generally
follow the state requested by SetServo, however servo tracking error can cause one or more axis to
automatically shutdown. When a servo is turned off, it’s enabled is also turned off to shutdown the
amplifier. You can re-enable an amplifier without requesting servo activity by using SetEnable

Binary Command Implementation
function dms_EnableIsOn(GroupNumber:integer):boolean;

begin
dms_EnableIsOn:=

dms_AxisBooleanFunction(bc_EnableIsOn,GroupNumber);
end;

ActiveX Example
if Msb.EnableIsOn(3) then

MsbBox "Axis 3 is enabled"
End If

See Also
Servo States
SetEnable
SetServo
ServoIsOn

3-26

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

ErrorCode

ActiveX Syntax
Public Function ErrorCode As Integer

C Syntax
int dms_ErrorCode

Pascal Syntax
function dms_ErrorCode:integer

Description
ErrorCode returns the result of the last command executed. If an error occurs in the processing of a DLL
call commands will not be executed until the ResetErrorCode command is issued. In the ActiveX control,
commands remaining in the buffer will not be performed until the next command buffer is submitted.

A value of "0" means no error occurred. Other error codes are described in the Error Code list found
in the SAW.HLP file under Error Codes.

ActiveX Example
Msb.SetMotor 1, true
Msb.BeginMoveTo 1, 2000
Msb.PerformBuffer
While Msb.Busy do

DoEvents
WEnd
if Msb.ErrorCode <> 0 then

MsgBox "Error In Last Command"
End If

3-27

3Command Reference

ErrorLimit

ActiveX Syntax
Public Function ErrorLimit(ByVal AxisNumber as Integer) As Long

C Syntax
long dms_ErrorLimit(int AxisNumber)

Pascal Syntax
function dms_ErrorLimit(AxisNumber:integer):longint;

Description
ErrorLimit reports the current error limit setting for a single axis. The error limit is used to establish
how much servo tracking error is permitted before the system should consider the motor inoperative.
If the tracking error is greater than the error limit, the controller shuts down the motor.

Binary Command Implementation
function dms_ErrorLimit(AxisNumber:integer):longint;

begin
dms_ErrorLimit:=

dms_AxisLongintFunction(bc_ErrorLimit,AxisNumber);
end;

ActiveX Example
Status.Caption=Msb.ErrorLimit(2)

See Also
dms_SetErrorLimit

3-28

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

ErrorPosition

ActiveX Syntax
Public Function ErrorPosition(ByVal AxisNumber as Integer) As Long

C Syntax
long dms_ErrorPosition(int AxisNumber)

Pascal Syntax
function dms_ErrorPosition(AxisNumber:integer):longint;

Description
ErrorPosition returns the difference between where the servo is commanded to be and its actual
position. This difference is monitored. If it is found to be greater than the error limit, the servo is turned
off.

Binary Command Implementation
function dms_ErrorPosition(AxisNumber:integer):longint;
 begin
 dms_ErrorPosition:=
 dms_AxisLongintFunction(bc_ErrorPosition,AxisNumber);
 end;

ActiveX Example
Status.Caption=Msb.ErrorPosition(2)

See Also
CommandedPosition
ActualPosition

3-29

3Command Reference

Gain

ActiveX Syntax
Public Function Gain(ByVal AxisNumber as Integer) As Integer

C Syntax
int dms_Gain(int AxisNumber)

Pascal Syntax
function dms_Gain(AxisNumber:integer):integer;

Description
Motion Server implements PID control. This function returns the current value of the control law gain,
one of the primary compensation parameters.

Binary Command Implementation
function dms_Gain(AxisNumber:integer):integer;

begin
dms_Gain:=dms_AxisIntegerFunction(bc_Gain,AxisNumber);
end;

ActiveX Example
Status.Caption=Msb.Gain(2)

See Also
Integrator
SetGain
SetIntegrator
SetZero
Zero

3-30

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

IBit

ActiveX Syntax
Public Function IBit(ByVal AxisNumber as Integer) As Boolean

C Syntax
long dms_IBit(int AxisNumber);

Pascal Syntax
function dms_IBit(AxisNumber:integer):longint;

Description
dms_Ibit returns the high/low level of the encoder I channel for the specified axis. If the axis is not using
the encoder, the A, B, and I signals can be used as general purpose inputs. The dms_IBit function returns
the current value of the index pulse. As index pulses are quite narrow it is possible to miss the pulse if
it is not latched. The dms_SetCaptureTrip, dms_ArmIndexCapture, and dms_CaptureHasTripped
functions can be used to latch the index uplse. AxisNumber must be in the range 1 to 16.

Binary Command Implementation
function dms_IBit(AxisNumber:integer):longint;

begin
dms_IBit:=dms_AxisLongintFunction(bc_IBit,AxisNumber);
end;

ActiveX Example
Status.Caption=Msb.ABit(2)

See Also
dms_ABit
dms_BBit
dms_CaptureBit
dms_SetCaptureTrip
dms_ArmIndexCapture
dms_CaptureHasTripped

3-31

3Command Reference

Init (ActiveX only)

ActiveX Syntax
Public Sub Init

Description
Init puts the ActiveX control into a known condition for handling command buffer operations. This
command should be called from the Form.Load event of the application

ActiveX Example
Msb.Init

3-32

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

InputBit

C Syntax
int dms_InputBit(int InputBitNumber)

Pascal Syntax
function dms_InputBit(InputBitNumber:word):boolean;

Description
InputBit returns true if the input level is high and false if the level is low. Values for bit number are 1
through 48.

Errors
If a bit number is requested beyond the range for the system then a ParameterOutOfRangeEscapeCode
occurs.

Binary Command Implementation
function dms_InputBit(InputBitNumber:word):boolean;

begin
if ErrorCode <> 0 then

exit;
FifoReset;
FifoWriteWord(bc_InputBit);
FifoWriteWord(InputBitNumber);
FifoSendMessageandWaitForResponse;
ErrorCode:=FifoReadWord;
if ErrorCode=0 then

dms_InputBit:=FifoReadBoolean
else

dms_InputBit:=false;
end;

ActiveX Example
if Msb.InputBit(12) = True then

MsbBox "Input 12 is high"
End If

3-33

3Command Reference

DLL Example
Consider wanting to perform some instructions if Input 1 had a high level. The following code would
make this check:

...
if InputBit(1) then
 Writeln(‘Bit 1 is on’)
else
 Writeln(‘Bit 1 is off’);
...

See Also
InputLong1
InputLong2
InputLong3
SetOutputBit

3-34

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

Integrator

ActiveX Syntax
Public Function Integrator(ByVal AxisNumber as Integer) As Integer

C Syntax
int dms_Integrator(int AxisNumber)

Pascal Syntax
function dms_Integrator(AxisNumber:integer):integer;

Description
Motion Server implements PID control. This function returns the current value of the control law
integrator, one of the primary compensation parameters.

Binary Command Implementation
function dms_Integrator(AxisNumber:integer):integer;

begin
dms_Integrator:=

dms_AxisIntegerFunction(bc_Integrator,AxisNumber);
end;

ActiveX Example
Status.Caption=Msb.Integrator(2)

See Also
Gain
Zero
Integrator
SetGain
SetZero
SetIntegrator

3-35

3Command Reference

Jog

ActiveX Syntax
Public Sub Jog(ByVal AxisNumber as Integer, ByVal Speed as Long)

C Syntax
void dms_Jog(int AxisNumber, long Speed)

Pascal Syntax
procedure dms_Jog(AxisNumber:integer; Speed:longint);

Description
Jog directs an axis to move at the specified speed indefinitely. if the magnitude of aSpeed is smaller than
the magnitude of the current speed the axis will slow down at the decel rate. If the magnitude is greater
it will speed up at the accel rate. It is possible to jog in the opposite direction as the current speed. It is
possible to jog at 0 speed. Jog may supersede a move, changing it into a continuous motion.

Although it is possible to use jog to produce movement when searching for home switches or other input
events, it is generally a better idea to move a distance which should include the event so that the behavior
of the machine if the event is not found is to stop rather than to travel indefinitely.

Jogging is NOT protected by positive and negative limits. Jogging, by it's nature, is a continuous move.
To realize jogging velocity to the edge of a machine movement, perform a move to the positive or
negative limit at the required jog speed.

Binary Command Implementation
procedure dms_Jog(AxisNumber:integer; Speed:longint);

begin
dms_AxisProcedureLongintParam(bc_Jog,AxisNumber,Speed);
end;

ActiveX Example
Msb.Jog 2, 500

SeeAlso
TNAxis.Stop

3-36

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

LinkToBuffer

ActiveX Syntax
Public Sub LinkToBuffer(ByVal GroupNumber as Integer)

C Syntax
void dms_LinkToBuffer(int GroupNumber)

Pascal Syntax
procedure dms_LinkToBuffer(GroupNumber:integer);

Description
Motion Server supports continuous path motion. Curves are described by appending vectors and arcs
to a list associated with the axis group that will perform the curve. To indicate to an axis group that space
should be made available for this list use the dms_LinkToBuffer command. There are 2 lists in the
standard binary command interpreter. Each list can support up to 500 elements and up to a T6Axis group.
If both of these buffers have been used the error code will be set to be_OutOfCurveBuffers. If this
occurs the most likely explanation is that dms_TNAxisRelease was not used to deallocate the buffers.
Refer to this command, or use the dms_ResetAllocation command to provide a "clean slate" on startup.

Binary Command Implementation
procedure dms_LinkToBuffer(GroupNumber:integer);

begin
dms_ProcedureIntegerParam(GroupNumber);
end;

ActiveX Example
Msb.LinkToBuffer XYTable

3-37

3Command Reference

Example
procedure Trace2DPattern;

var xy:integer;

begin
dms_SetMotorType(1,ServoMotor);
dms_SetMotorType(2,ServoMotor);
xy:=dms_T2AxisInit(1,2);
dms_SetAccel(xy,20000);
dms_SetDecel(xy,20000);
dms_SetSpeed(xy,2000);
dms_LinkToBuffer(xy); {now xy can support curves}
dms_Clear;
dms_T2AxisAppendMoveBy(xy,1000,0);
dms_T2AxisAppendArc(xy,2000,0,90);
dms_BeginMoveAlongCurve(xy);
.....

SeeAlso
dms_T2AxisAppendArc
dms_T3AxisAppendArc
dms_T2AxisAppendMoveBy
dms_T2AxisAppendMoveTo
dms_ReleaseAllocation
dms_TNAxisDispose

3-38

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

MotorIsOn

ActiveX Syntax
Public Function MotorIsOn(ByVal GroupNumber as Integer) As Boolean

C Syntax
int dms_MotorIsOn(int GroupNumber)

Pascal Syntax
function dms_MotorIsOn(GroupNumber:integer):boolean;

Description
MotorIsOn returns true (non-0) if all of the motors in the receiver are active (servoing if configured for
servo) and false (0) if at least one of the motors is not active. Motors must be active before a move can
take place.

Binary Command Implementation
function dms_MotorIsOn(GroupNumber:integer):boolean;

begin
dms_MotorIsOn:=

dms_AxisBooleanFunction(bc_MotorIsOn,GroupNumber);
end;

ActiveX Example
if Msb.MotorIsOn 2 then

MsgBox "Motor 1 is holding position"
End If

SeeAlso
SetMotor

3-39

3Command Reference

MoveAlongCurve

ActiveX Syntax
Public Sub MoveAlongCurve(ByVal GroupNumber as Integer)

C Syntax
void dms_MoveAlongCurve(int GroupNumber)

Pascal Syntax
procedure dms_MoveAlongCurve(GroupNumber:integer);

Description
MoveAlongCurve performs continuous path motion over an arbitrary, multiaxis curve description
which was previously setup. This routine is not implemented by a T1Axis single axis. Program execution
does not continue past MoveAlongCurve until the curve has been completed.

Binary Command Implementation
procedure dms_MoveAlongCurve(GroupNumber:integer);

begin
dms_AxisProcedure(bc_MoveAlongCurve,GroupNumber);
end;

ActiveX Example
Msb.MoveAlongCurve XYTable

SeeAlso
Curved Trajectories
TNAxis.BeginMoveAlongCurve
TNAxis.MoveIsFinished

3-40

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

MoveIsFinished

ActiveX Syntax
Public Function MoveIsFinished(ByVal AxisNumber as Integer) As Boolean

C Syntax
int dms_MoveIsFinished(int GroupNumber)

Pascal Syntax
function dms_MoveIsFinished(GroupNumber:integer):boolean;

Description
MoveIsFinished indicates if the TNAxis is currently moving or if the move has completed. The DLL
function returns 0 to represent false and non-0 to represent true. This would normally be used after
starting motion with a procedure that had a name starting with BeginMove......

Because of the multitasking options with Motion Server and SI-3000 it is sometimes more convenient
to seperate functions into two parts, a motion part which uses “synchronous” motion commands that
start with Move, and another part which performs the “background” activity, and to have both functions
running at the same time.

Binary Command Implementation
function dms_MoveIsFinished(GroupNumber:integer):boolean;

begin
dms_MoveIsFinished:=

dms_AxisBooleanFunction(bc_MoveIsFinished,GroupNumber);
end;

ActiveX Example
if Msb.MoveIfFinished 2 then

MsgBox "Axis 2 Move Is Completed"
End If

3-41

3Command Reference

DLL Example
Imagine you would like to move a fixed distance with the expectation of hitting a switch along the way.
The following routine would perform this check:
...
XAxis.BeginMoveBy(20000);
repeat
 yield;
 if XAxis.MoveIsFinished then
 Escape(SwitchNotFoundEscapeCode);
until InputBit(12);
XAxis.Stop;
...

The switch closure is supposed to be found before the end of the move. If the move finishes first there
was a problem and an escape is performed. Otherwise the move is prematurely stopped near the switch
point.

SeeAlso
BeginMoveTo
BeginMoveBy
TNAxis.BeginMoveToVector
TNAxis.BeginMoveByVector
TNAxis.BeginMoveAlongCurve

3-42

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

NegativeLimit

ActiveX Syntax
Public Function NegativeLimit(ByVal AxisNumber as Integer) As Long

C Syntax
long dms_NegativeLimit(int AxisNumber)

Pascal Syntax
function dms_NegativeLimit(AxisNumber:integer):longint;

Description
dms_NegativeLimit reports the current negative limit setting for a single axis. The negative limit
establishes the most negative legal value for a move destination. If a move is requested that would
produce a motor position more negative than the negative limit, an error is produced and no motion is
performed. Note that position limits are not used when performing a jog. Jogs are by nature indefinite
moves.

Binary Command Implementation
function dms_NegativeLimit(AxisNumber:integer):longint;

begin
dms_NegativeLimit:=

dms_AxisLongintFunction(bc_NegativeLimit,AxisNumber);
end;

ActiveX Example
Status.Caption=Msb.NegativeLimit(2)

See Also
dms_SetPositiveLimit

3-43

3Command Reference

PerformBuffer (ActiveX only)

ActiveX Syntax
Public Sub PerformBuffer()

Description
In order to communicate more efficiently commands can be buffered and sent in one transaction to the
controller. Once these commands have been buffered the PerformBuffer command sends them to the
controller. It is important to wait for the buffer to be finished before attempting to queue up any more
commands.

ActiveX Example
...
Msb.T1AxisMoveTo 1, 2000
Msb.T1AxisMoveTo 2, 4000
PerformBuffer
While Msb.Busy

DoEvents
WEnd
Msb.T1AxisMoveTo 1, 0
.....

See Also
Busy
SetBuffer

3-44

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

PositiveLimit

ActiveX Syntax
Public Function PositiveLimit(ByVal AxisNumber as Integer) As Long

C Syntax
long dms_PositiveLimit(int AxisNumber)

Pascal Syntax
function dms_PositiveLimit(AxisNumber:integer):longint;

Description
dms_PositiveLimit reports the current positive limit setting for a single axis. The positive limit
establishes the most positive legal value for a move destination. If a move is requested that would
produce a motor position greater than the positive limit, an error is produced and no motion is
performed. Note that position limits are not used when performing a jog. Jogs are by nature indefinite
moves.

Binary Command Implementation
function dms_PositiveLimit(AxisNumber:integer):longint;

begin
dms_PositiveLimit:=

dms_AxisLongintFunction(bc_PositiveLimit,AxisNumber);
end;

ActiveX Example
Status.Caption=Msb.PositiveLimit(2)

See Also
dms_SetNegativeLimit

3-45

3Command Reference

ProfileVelocity

ActiveX Syntax
Public Function ProfileVelocity(ByVal AxisNumber as Integer) As Long

C Syntax
long dms_ProfileVelocity(int GroupNumber)

Pascal Syntax
function dms_ProfileVelocity(GroupNumber:integer):longint;

Description
ProfileVelocity returns the current commanded speed (signed magnitude) that is being used to generate
the trapezoidal motion trajectory. During slew, the magnitude of ProfileVelocity is the same as Speed.
During accel and decel the profile velocity varies according to the point in the profile.

Binary Command Implementation
function dms_ProfileVelocity(GroupNumber:integer):longint;

begin
dms_ProfileVelocity:=

dms_AxisLongintFunction(bc_ProfileVelocity,GroupNumber);
end;

ActiveX Example
Status.Caption=Msb.ProfileVelocity(2)

See Also
TNAxis.CommandedPosition
T1Axis.ActualPosition

3-46

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

ResetAllocation

ActiveX Syntax
Public Sub ResetAllocation(ByVal AxisNumber as Integer)

C Syntax
void dms_ResetAllocation

Pascal Syntax
procedure dms_ResetAllocation;

Description
Motion Server is designed to provide motion services to several clients at one time. In the course of
providing these services resources are allocated through the dms_T2AxisInit..dms_T6AxisInit commands
and through the dms_LinkToBuffer routine. If a client program terminates and does not dispose of
these resources with the dms_TNAxisDispose command, eventually the resources will be consumed
and Motion Server will report errors. The procedure dms_ResetAllocation is used to provide a "clean
slate" for Motion Server resources. In a multiple client situation, dms_ResetAllocation should not be
used as it would "pull the resources out from under" another client program which may be active. If you
are developing an application that only involves a single client, dms_ResetAllocation can be used in the
startup code to insure a full set of resources is available.

Binary Command Implementation
procedure dms_ResetAllocation;

begin
dms_Procedure(bc_ResetAllocation);
end;

ActiveX Example
Msb.ResetAllocation

See Also
dms_TNAxisDispose

3-47

3Command Reference

ResetWatchdog

ActiveX Syntax
Public Sub ResetWatchdog(ByVal AxisNumber as Integer)

C Syntax
void dms_ResetWatchdog()

Pascal Syntax
procedure dms_ResetWatchdog;

Description
The motion system operates under the supervision of a watchdog system. If for any reason the processor
should be delayed in responding to the motion system’s timer event the watchdog system will shutdown
the power amplifiers to insure that no undesired motion occurs. ResetWatchdog allows servo activity
to occur again.

Binary Command Implementation
procedure dms_ResetWatchdog;

begin
dms_Procedure(bc_ResetWatchdog);
end;

Errors
 If ResetWatchdog discovers that the watchdog did not reset a WatchdogFailedToResetEscapeCode will
occur.

ActiveX Example
Msb.ResetWatchdog

See Also
WatchdogHasTripped

3-48

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

SampleRate

ActiveX Syntax
Public Function SampleRate As Integer

C Syntax
int dms_SampleRate

Pascal Syntax
function dms_SampleRate:integer;

Description
The function dms_SampleRate reports the current sample rate frequency of the controller. Expected
values are in the 1000 to 4000 Hz range. The sample rate can be adjusted with the dms_SetSampleRate
procedure

Binary Command Implementation
function dms_SampleRate:integer;

begin
dms_IntegerFunction(bc_SampleRate);
end;

Errors
 If ResetWatchdog discovers that the watchdog did not reset a WatchdogFailedToResetEscapeCode will
occur.

ActiveX Example
Status.Caption=Msb.SampleRate

See Also
WatchdogHasTripped

3-49

3Command Reference

SetAccel

ActiveX Syntax
Public Sub SetAccel(ByVal AxisNumber as Integer, ByVal Param As Long)

C Syntax
void dms_SetAccel(int GroupNumber, long Param)

Pascal Syntax
procedure dms_SetAccel(GroupNumber:integer; Param:longint);

Description
SetAccel is used to set the acceleration of a profiled move in counts per second squared. If the receiver
is a T1Axis the acceleration is for the movement of that motor when operating alone. If the receiver is
an axis group , for example a T2Axis or T4Axis, the acceleration applies to the coordinated motion profile
of the group. SetDecel may be used to independently set the deceleration of the TNAxis.

Binary Command Implementation
procedure dms_SetAccel(GroupNumber:integer; Param:longint);

begin
dms_AxisProcedureLongintParam(bc_SetAccel,GroupNumber,Param);
end;

ActiveX Example
Msb.SetAccel 1, 50000

SeeAlso
TNAxis.SetDecel
TNAxis.SetSpeed
TNAxis.Accel
TNAxis.Speed
TNAxis.Decel

3-50

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

SetActualPosition

ActiveX Syntax
Public Sub SetActualPosition(ByVal AxisNumber as Integer, ByVal Param
as long)

C Syntax
void dms_SetActualPosition(int AxisNumber, long Param)

Pascal Syntax
procedure dms_SetActualPosition(AxisNumber:integer; Param:longint);

Description
SetActualPosition is used to define what the current physical position should be. In Douloi Pascal this
procedures takes as many parameters as the dimension of the axis group, ie for a single axis this takes
one parameter. For a four axis machine four parameters are required, for X,Y,Z, and U axis.

Binary Command Implementation
procedure dms_SetActualPosition(AxisNumber:integer; Param:longint);

begin
dms_AxisProcedureLongintParam(

bc_SetActualPosition,AxisNumber,Param);
end;

ActiveX Example
Msb.SetActualPosition 1, 0

DLL Example
SetActualPosition(1,1000,ErrorCode);
SetActualPosition(2,2000,ErrorCode);

See Also
T1Axis.ActualPosition
TNAxis.GetActualPositionVector

3-51

3Command Reference

SetBuffer (ActiveX only)

ActiveX Syntax
Public Sub SetBuffer(ByVal State As Boolean)

Description
SetBuffer turns on and off the buffering of commands. If the buffer is off commands are sent
immediately. If the buffer is on, commands are stored in the host until PerformBuffer is called or until
the number of commands is approaching the buffer size of approximately 20 commands. The commands
are then sent to the controller once which is more efficient.

On initialization the buffer is set on. If the buffer is on remember to use the PerformBuffer command
to get results.

ActiveX Example
Msb.SetBuffer true

See Also
PerformBuffer

3-52

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

SetCaptureTrip

ActiveX Syntax
Public Sub SetCaptureTrip(ByVal AxisNumber as Integer, ByVal State as
boolean)

C Syntax
void dms_SetCaptureTrip(int AxisNumber, int State)

Pascal Syntax
procedure dms_SetCaptureTrip(AxisNumber:integer; State:boolean);

Description
The procedure dms_SetCaptureTrip is used to establish what signal transition constitutes a capture
event. A low-to-high transition would be indicated with a true parameter. A high-to-low transition
would be indicated with a false parameter. dms_SetCaptureTrip is used with dms_ArmIndexCapture
arm dms_ArmIputCapture.

Binary Command Implementation
procedure dms_SetCaptureTrip(AxisNumber:integer; State:boolean);

begin
dms_AxisProcedureBooleanParam(

bc_SetCaptureTrip,AxisNumber,State);
end;

ActiveX Example
Msb.SetCaptureTrip 1, true

DLL Example
dms_SetCaptureTrip(1,true);
dms_ArmIndexCapture; {controller waiting for low-to-high change}

See Also
dms_ArmIndexCapture
dms_ArmInputCapture

3-53

3Command Reference

SetCommandedPosition

ActiveX Syntax
Public Sub SetCommandedPosition(ByVal AxisNumber as Integer, ByVal
Param as long)

C Syntax
void dms_SetCommandedPosition(int AxisNumber, long Param)

Pascal Syntax
procedure dms_SetCommandedPosition(

AxisNumber:integer; Param:longint);

Description
SetCommandedPosition is used to set the desired setpoint for the servo. During normal profiled moves
the commanded position is set for you by the profiler whilch calculates a smooth sequences of
commanded positions. However there are some situations where the criteria for where the motor
should servo is custom, for example electronic gearing. SetCommandedPosition “goes around” the
profiler allowing you to directly set the servo setpoint. Note that a discontinuity in setpoint positions
will directly map into an attempted discontinuity in motor position resulting in a substantial jerk.This
procedure takes as many parameters as the dimension of the axis group, ie for a single axis this takes one
parameter. For a four axis machine four parameters are required, for X,Y,Z, and U axis.

Binary Command Implementation
procedure dms_SetCommandedPosition(

AxisNumber:integer; Param:longint);

begin
dms_AxisProcedureLongintParam(

bc_SetCommandedPosition,AxisNumber,Param);
end;

3-54

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

ActiveX Example
Msb.SetCommandedPosition 1, 0

SeeAlso
T1Axis.ActualPosition
TNAxis.GetActualPositionVector
TNAxis.CommandedPosition
TNAxis.GetCommandedPositionVector
TNAxis.SetCommandedPositionVector

3-55

3Command Reference

SetCommandedTorque

ActiveX Syntax
Public Sub SetCommandedTorque(ByVal AxisNumber as Integer, ByVal Param
as Integer)

C Syntax
void dms_SetCommandedTorque(int AxisNumber, int Param)

Pascal Syntax
procedure dms_SetCommandedTorque(

AxisNumber:integer; Param:integer);

Description
SetCommandedTorque is used in situations where the motor is being run “open loop”. This procedure
sets the value for the digital to analog converter for the physical axis related to this T1Axis. The
parameter value may range from MinTorque to MaxTorque which is the range -2040 to 2039. The actual
torque is the result of adding this parameter to the current TorqueOffset for the axis. The resulting sum
will be truncated within the bounds MinTorque to MaxTorque. SetCommandedTorque can only be
used if the axis is not currently servoing and the axis is enabled.

Binary Command Implementation
procedure dms_SetCommandedTorque(

AxisNumber:integer; Param:integer);

begin
dms_AxisProcedureIntegerParam(

bc_SetCommandedTorque,AxisNumber,Param);
end;

Errors
SetCommandedTorque will escape if the parameter value is greater than MaxTorque or less then
MinTorque with a ParameterOutOfRangeEscapeCode .

3-56

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

ActiveX Example
Msb.SetCommandedTorque 1, 1000

SeeAlso
CommandedTorque
OffsetTorque

3-57

3Command Reference

SetCompareBit

ActiveX Syntax
Public Sub SetCompareBit(ByVal AxisNumber as Integer, ByVal Param as
Boolean)

C Syntax
void dms_SetCompareBit(int AxisNumber, int Param)

Pascal Syntax
procedure dms_SetCompareBit(AxisNumber:integer; Param:boolean);

Description
dms_SetCompareBit is used to manipuate the axis compare bit signal as if it was a general purpose
output. This is used to provide an output when the high-speed compare function for that axis is not
required. If Param is true, the compare output signal is set to a logic high level. If Param is false, the signal
is set to a logic low level.

Binary Command Implementation
procedure dms_SetCompareBit(AxisNumber:integer; Param:boolean);

begin
dms_AxisProcedureBooleanParam(bc_SetCompare,AxisNumber,Param);
end;

ActiveX Example
Msb.SetCompareBit 1, true

DLL Example
dms_SetCompareBit(1,true);
dms_SetCompareBit(2,false);

See Also
dms_SetOutputBit

3-58

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

SetCoordinateInversion

ActiveX Syntax
Public Sub SetCoordinateInversion(ByVal AxisNumber as Integer, ByVal
Param as Boolean)

C Syntax
void dms_SetCoordinateInversion(int AxisNumber, int Param)

Pascal Syntax
procedure dms_SetCoordinateInversion(

AxisNumber:integer; Param:boolean);

Description
SetCoordinateInversion is used to change the direction a motor regards as positive. Axis direction is
influenced by mechanical transmission reversals, encoder phase definition, and wiring conventions. If
the motor does not move in the direction regarded as positive this procedure may be used to invert the
direction by calling with a parameter value of true. Using the predefined booleans On and Off may
improve the readability of the code. A better design option is to change the wiring, most likely of the
A and B channels of the encoder so that the axis moves in the correct direction from the default values
rather than having to be “setup” by this procedure call. If that wiring is inconvenient this procedure may
be the simplest option. Changing the encoder wires also requires changing the motor wires so as to
preserve the loop sign. Note that changing the wires of the motor alone will not have the desired effect
but will instead cause the servo loop to go unstable.

This command operates in an incremental manner by inverting the coordinate frame about the current
actual position rather than 0. The best time to use this command is during initial setup before homing
has been performed. This is not intended to be used during motion.

Binary Command Implementation
procedure dms_SetCoordinateInversion(

AxisNumber:integer; Param:boolean);

begin
dms_AxisProcedureBooleanParam(

bc_SetCoordinateInversion,AxisNumber,Param);
end;

3-59

3Command Reference

ActiveX Example
Msb.SetCoordinateInversion 1, true

See Also
T1Axis.SetLoopInversion

3-60

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

SetDac

ActiveX Syntax
Public Sub SetDac(ByVal AxisNumber as Integer, ByVal Param as integer)

C Syntax
void dms_SetDac(int AxisNumber, int Param)

Pascal Syntax
procedure dms_SetDac(AxisNumber:integer; Param:integer);

Description
The dms_SetDac command is used to operate the motor command output signal for a particular axis
as if it was a general purpose Digital to Analog converter output. The signal is made available for use by
setting the motor type for that axis to be ServoMotorNoDAC. This is most often used at the motion
controller application level when creating new application level control laws. dms_SetDac is a low-level
command and operates the dac regardless of whether the dms_MotorIsOn or the dms_EnableIsOn for
a particular axis.

Binary Command Implementation
procedure dms_SetDac(AxisNumber:integer; Param:integer);

begin
dms_AxisProcedureIntegerParam(

bc_SetDac,AxisNumber,Param);
end;

Errors
SetCommandedTorque will escape if the parameter value is greater than MaxTorque or less then
MinTorque with a ParameterOutOfRangeEscapeCode .

3-61

3Command Reference

ActiveX Example
Msb.SetDac 1, 1000

DLL Example
dms_SetMotorType(1,ServoMotorNoDac);
dms_SetDAC(1024); {sets output to 5 volts}

SeeAlso
dms_CommandedTorque
dms_TorqueOffset

3-62

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

SetDecel

ActiveX Syntax
Public Sub SetDecel(ByVal GroupNumber as Integer, ByVal Param as long)

C Syntax
void dms_SetDecel(int GroupNumber, long Param)

Pascal Syntax
procedure dms_SetDecel(GroupNumber:integer; Param:longint);

Description
SetDecel establishes the deceleration rate that will be used by an axis during the ends of moves and stops.
The deceleration may be different from the accelerations and is independently set with SetAccel.
aDecelValue is in units of counts per second squared. Values in the range of 200,000 are gentle
decelerations. Values in the range of 2,000,000 are abrupt. It is possible to change the decel during any
phase of the move. The change takes immediate effect in the midst of the move.

Binary Command Implementation
procedure dms_SetDecel(GroupNumber:integer; Param:longint);

begin
dms_AxisProcedureLongintParam(bc_SetDecel,GroupNumber,Param);
end;

Errors
If a move is in progress and the decel is changed on the fly to a value lower than the current decel it is
possible that the current motion cannot be completed at that decel. The point where deceleration should
have started may be “behind” the axis already. In this case the the axis will produce a
MotionOverrunEscapeCode and come to a stop at the new decel value.

ActiveX Example
Msb.SetDecel 1, 50000

SeeAlso
TNAxis.SetAccel
TNAxis.SetSpeed
TNAxis.MoveTo
TNAxis.MoveBy

3-63

3Command Reference

SetEnable

ActiveX Syntax
Public Sub SetEnable(ByVal GroupNumber as Integer, ByVal Param as
Boolean)

C Syntax
void dms_SetEnable(int GroupNumber, int Param)

Pascal Syntax
procedure dms_SetEnable(GroupNumber:integer; Param:boolean);

Description
If SetEnable(on) then the analog output for the receiving axis or axis group is turned on, and the amp
enable is asserted. The current CommandedTorque is expressed through the analog output. If
SetEnable(off) the analog voltage is set to 0 and the amp enable line is not asserted. SetEnable(off) is
identical to SetMotor(off) and is provided for completeness. SetEnable(on) is distinct from SetMotor(on)
in that SetMotor(on) begins the control law whereas SetEnable(on) only enables the output of the
command allowing some other application criteria to determine what the CommandedTorque should
be.

Binary Command Implementation
procedure dms_SetEnable(GroupNumber:integer; Param:boolean);

begin
dms_AxisProcedureBooleanParam(bc_SetDecel,GroupNumber,Param);
end;

ActiveX Example
Msb.SetEnable 1, true

SeeAlso
SetCommandedTorque
CommandedTorque
SetMotor

3-64

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

SetErrorLimit

ActiveX Syntax
Public Sub SetErrorLimit(ByVal GroupNumber as Integer, ByVal Param as
long)

C Syntax
void dms_SetErrorLimit(int GroupNumber, long Param)

Pascal Syntax
procedure dms_SetErrorLimit(GroupNumber:integer; Param:longint);

Description
SetErrorLimit is used to describe how far a physical axis ‘s actual position can lag behind the commanded
position without that lagging being considered an error. Ideally the motor’s actual position exactly
follows the commanded position however system dynamics and transient response of the motion
control law means that in general this idealistic case is not achieved for arbitrary profiles although it can
be closely achieved for non-accelerating profiles. Systems which have high accelerations and decelerations
are also likely to incur following error during those times if the power system saturates. If the difference
between the actual position and commanded positions exceeds the error limit the axis will perform a
TNAxis.SetServo(Off) ;

The error limit is always being checked. Set the limit to be a large value if the SetServo(Off) behavior
is not desired.

Binary Command Implementation
procedure dms_SetErrorLimit(GroupNumber:integer; Param:longint);

begin
dms_AxisProcedureLongintParam(

bc_SetErrorLimit,GroupNumber,Param);
end;

ActiveX Example
Msb.SetErrorLimit 2, 200

3-65

3Command Reference

DLL Example
SetErrorLimit(1,200);
SetErrorLimit(5,500);

See Also
TNAxis.SetMotor
TNAxis.MotorIsOn

3-66

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

SetGain

ActiveX Syntax
Public Sub SetGain(ByVal AxisNumber as Integer, ByVal Param as
integer)

C Syntax
void dms_SetGain(int AxisNumber, int Param)

Pascal Syntax
procedure dms_SetGain(AxisNumber:integer; Param:integer);

Description
Motion Server and implements PID servo control. The gain of a control loop is one of the primary
parameters used to set the servo’s compensation. This procedure sets the control law gain to be
aGainValue. Values in the range of 16 to 150 are not unusual. As the gain increases the servo system
behaves more responsivly. As the gain becomes excessive the servo becomes “jittery” and tends to
vibrate. The gain is used in conjunction with the zero and integrator to establish the control law for servo
operation.

Binary Command Implementation
procedure dms_SetGain(AxisNumber:integer; Param:integer);

begin
dms_AxisProcedureIntegerParam(bc_SetGain,AxisNumber,Param);
end;

ActiveX Example
Msb.SetGain 1, 30

See Also
Gain
Integrator
SetIntegrator
SetZero
Zero

3-67

3Command Reference

SetIntegrator

ActiveX Syntax
Public Sub SetIntegrator(ByVal AxisNumber as Integer, ByVal Param as
Integer)

C Syntax
void dms_SetIntegrator(int AxisNumber, int Param)

Pascal Syntax
procedure dms_SetIntegrator(AxisNumber:integer; Param:integer);

Description
Motion Server aimplements PID servo control. The integrator of a control loop is one of the primary
parameters used to set the servo’s compensation. The integrator causes the error in a sero loop to
eventually reduce to 0. How quickly the error reduces to zero is related to how large the integrator is.
However if the integrator values becomes too large the system becomes unstable. In general the value
of the integrator should be about 1/10th the value of the gain parameter if the integrator is being used.

Binary Command Implementation
procedure dms_SetIntegrator(AxisNumber:integer; Param:integer);

begin
dms_AxisProcedureIntegerParam(

bc_SetIntegrator,AxisNumber,Param);
end;

ActiveX Example
Msb.SetIntegrator 1, 4

See Also
Gain
Integrator
SetGain
SetZero
Zero

3-68

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

SetLoopInversion

ActiveX Syntax
Public Sub SetLoopInversion(ByVal AxisNumber as Integer, ByVal Param
as Boolean)

C Syntax
void dms_SetLoopInversion(int AxisNumber, int Param)

Pascal Syntax
procedure dms_SetLoopInversion(AxisNumber:integer; Param:boolean);

Description
SetLoopInversion is used to add an additional sign change in the feedback loop so as to change the total
loop sign. This instruction is provided to compensate for encoder wiring or motor wiring which is not
providing the correct feedback sense. A better response to the problem of unstable loop sign is to change
the wiring of the motor leads (invert loop sign) or encoder A and B channels (invert coordinate frame
and sign) rather than use this instruction since forgetting this instruction in a future application causes
the motor to be unstable. AxisNumber must be in the range 1 to 16. Group Numbers are not allowed
for this routine.

Binary Command Implementation
procedure dms_SetLoopInversion(AxisNumber:integer; Param:boolean);

begin
dms_AxisProcedureBooleanParam(

bc_SetLoopInversion,AxisNumber,Param);
end;

ActiveX Example
Msb.SetLoopInversion 1,true

See Also
T1Axis.SetErrorLimit
T1Axis.SetCoordinateInversion

3-69

3Command Reference

SetMotor

ActiveX Syntax
Public Sub SetMotor(ByVal AxisNumber as Integer, ByVal Param as
Boolean)

C Syntax
void dms_SetMotor(int AxisNumber, int Param)

Pascal Syntax
procedure dms_SetMotor(AxisNumber:integer; Param:boolean);

Description
SetMotor is used to turn motor activity on and off for all the axis in the TNAxis. Called with a parameter
value of true enables the amplifier lines. The motor servos to the current location (if configured for
servo). When called with a parameter value of false the amplifier lines are disabled, the motor command
is set to 0 volts (if configured for servo) and no further motor activity occurs. Readability of the program
is improved by using the predefined boolean constants On and Off . SetMotor is an alias for the outdated
SetServo routine, (retained for backward comaptibility) to acknowledge both stepper and servo motor
capability.

Binary Command Implementation
procedure dms_SetMotor(AxisNumber:integer; Param:boolean);

begin
dms_AxisProcedureBooleanParam(bc_SetMotor,AxisNumber,Param);
end;

ActiveX Example
Msb.SetMotor 2, true
MSB.SetMotor XYTable, true

3-70

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

DLL Example
SetMotor(1,On);
SetMotor(1,Off);
SetMotor(102,On); {multiaxis group, all motors turned on}
SetMotor(104,Off); {multiaxis group, all motors turned off}

Escapes
SetMotor(On) will generate a WatchdogFailedToResetEscapeCode if the WatchdogHasTripped .

See Also
MotorIsOn

3-71

3Command Reference

SetMotorType (DMS only)

C Syntax
void dms_SetMotorType(int AxisNumber, int Param)

Pascal Syntax
procedure dms_SetMotorType(AxisNumber:integer; Param:integer);

Description
SetMotorType is used to configure a particular axis to run a servo motor or a stepper motor. The
AxisNumber parameter must be in the range 1 to 16. Group Numbers are not allowed for this
parameter. If the configuration is for stepper, it is also possible to indicate whether the step pulse goes
high to indicate a step or goes low.This information is conveyed through the bit mask parameter. The
following constants are included to aid in specifying the motor configuration:

(ServoMotor) or
(StepperMotor + (HighStepPulse or LowStepPulse))

When setting an axis for use as a servo motor, just use ServoMotor as the parameter. When specifying
a StepperMotor the parameter is StepperMotor with a pulse width contant and a pulse polarity constant
added to it.

Binary Command Implementation
procedure dms_SetMotorType(AxisNumber:integer; Param:integer);

begin
dms_AxisProcedureIntegerParam(bc_SetMotorType,AxisNumber,Param);
end;

DLL Example
If you wanted to indicate that the XAxis was a servo motor you would say:

SetMotorType(1,ServoMotor);

If you wanted to indicate that the XAxis was a stepper motor with a high going step you would say:

XAxis.SetMotorType(
StepperMotor+HighStepPulse);

3-72

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

SetNegativeLimit

ActiveX Syntax
Public Sub SetNegativeLimit(ByVal AxisNumber as Integer, Param As
Long)

C Syntax
void dms_SetNegativeLimit(int GroupNumber, long Param)

Pascal Syntax
procedure dms_SetNegativeLimit(GroupNumber:integer; Param:longint);

Description
SetNegativeLimit establishes a negative-direction boundary for movement. If the axis is asked to
attempt a move beyond this boundary, a PositionLimitEscapeCode will occur and the axis will stop.

Binary Command Implementation
procedure dms_SetNegativeLimit(GroupNumber:integer; Param:longint);

begin
dms_AxisProcedureLongintParam(

bc_SetNegativeLimit,GroupNumber,Param);
end;

ActiveX Example
Msb.SetNegativeLimit 1, -50000

See Also
SetPositiveLimit

3-73

3Command Reference

SetOutputBit

ActiveX Syntax
Public SetOutputBit(ByVal bitNumber as Integer, ByVal Param as
Boolean)

C Syntax
void dms_SetOutputBit(int BitNumber, int Param)

Pascal Syntax
procedure dms_SetOutputBit(BitNumber:word; Param:boolean);

Description
SetOutputBit is used to set output bits to a prescribed level. BitNumber should be in the range of 1 to
48. Value should be a boolean parameter. The predefined constants On and Off can help improve
readability of the program. These bits will only take effect if SetOutputEnable(On) has been used since
a hardware reset.

Errors
If the bit number is outside of the allowable range for the system configuraiton a
ParameterOutOfRangeEscapeCode will occur.

Binary Command Implementation
procedure dms_SetOutputBit(BitNumber:word; Param:boolean);

begin
if ErrorCode <> 0 then

exit;
FifoReset;
FifoWriteWord(bc_SetOutputBit);
FifoWriteWord(bitNumber);
FifoWriteBoolean(Param);
FifoSendMessageandWaitForResponse;
ErrorCode:=FifoReadWord;
end;

ActiveX Example
Msb.SetOutputBit 14, true

3-74

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

DLL Example
SetOutputEnable(on);
SetOutputBit(1,On);

3-75

3Command Reference

SetOutputEnable (DMS Only)

C Syntax
void dms_SetOutputEnable(int Param)

Pascal Syntax
procedure dms_SetOutputEnable(Param:boolean);

Description
After a hardware reset, the general I/O is configured as inputs and the output drives are tristated. Pullups
on the signals will assert a “soft” high level as the default signal. Digital outputs on the axis connector will
also be tristated after reset. SetOutputEnable activates the outputs (on signals configured to be outputs)
so that SetOutputBit works. SetOutputEnable(Off) tristates the outputs in the same manner that a
hardware reset would. The DLL call will escape if there are insufficient tasks available to perform the
operation.

Binary Command Implementation
procedure dms_SetOutputEnable(Param:boolean);

begin
if ErrorCode <> 0 then

exit;
FifoReset;
FifoWriteWord(bc_SetOutputEnable);
FifoWriteBoolean(Param);
FifoSendMessageandWaitForResponse;
ErrorCode:=FifoReadWord;
end;

DLL Example
SetOutputEnable(on);
SetOutputEnable(off);

See Also
SetOutputBit
SetOutputBit(2,Off);

3-76

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

SetPositiveLimit

ActiveX Syntax
Public Sub SetPositiveLimit(ByVal AxisNumber as Integer, ByVal Param
as Long)

C Syntax
void dms_SetPositiveLimit(int GroupNumber, long Param)

Pascal Syntax
procedure dms_SetPositiveLimit(GroupNumber:integer; Param:longint);

Description
SetPositiveLimit establishes a positive-direction boundary for movement. If the axis is asked to attempt
a move beyond this boundary, a PositionLimitEscapeCode will occur and the axis will stop.

Binary Command Implementation
procedure dms_SetPositiveLimit(GroupNumber:integer; Param:longint);

begin
dms_AxisProcedureLongintParam(

bc_SetPositiveLimit,GroupNumber,Param);
end;

ActiveX Example
Msb.SetPositiveLimit 1, 50000

See Also
SetNegativeLimit

3-77

3Command Reference

SetSampleRate

ActiveX Syntax
Public Sub SetSampleRate(ByVal Param as Integer)

C Syntax
void dms_SetSampleRate(int Param)

Pascal Syntax
procedure dms_SetSampleRate(Param:integer);

Description
SetSampleRate establishes the control sample rate frequency. The default value is 1000. High performance
brushless motors should be controlled at higher sample rates, such as 2000 or 4000. Application tasks are
invoked at the sample rate frequency.

Binary Command Implementation
procedure dms_SetSampleRate(Param:integer);

begin
dms_ProcedureIntegerParam(

bc_SetSampleRate,Param);
end;

ActiveX Example
Msb.SetSampleRate 2000

See Also
dms_SampleRate

3-78

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

SetSpeed

ActiveX Syntax
Public Sub SetSpeed(ByVal AxisNumber as Integer, ByVal Param as Long)

C Syntax
void dms_SetSpeed(int GroupNumber, long Param)

Pascal Syntax
procedure dms_SetSpeed(GroupNumber:integer; Param:longint);

Description
SetSpeed establishes the slew speed to be used during axis movement. aSpeed is in units of counts/
second. Values in the range of 80,000 are brisk. Values in the range of 1000 are slow. The speed of a move
may be changed on the fly at any point in a move and take immediate effect if the motion is in the slew
phase. For single axis machines SetSpeed effects the speed of the axis. For multiaxis groups SetSpeed
effects the vector speeed of the group.

Binary Command Implementation
procedure dms_SetSpeed(GroupNumber:integer; Param:longint);

begin
dms_AxisProcedureLongintParam(bc_SetSpeed,GroupNumber,Param);
end;

ActiveX Example
Msb.SetSpeed 2, 20000
MSB.SetSpeed XYTable, 10000

SeeAlso
TNAxis.SetAccel
TNAxis.SetDecel
TNAxis.MoveTo
TNAxis.MoveBy
TNAxis.BeginMoveTo
TNAxis.BeginMoveBy

3-79

3Command Reference

SetUserBoolean

ActiveX Syntax
Public Sub SetUserBoolean(ByVal Index as longint, ByVal Value as
Boolean)

C Syntax
void dms_SetUserBoolean(int Index, int value)

Pascal Syntax
procedure dms_SetUserBoolean(Index:integer; Value:boolean);

Description
SetUserBoolean assigns the value the boolean variable in Motion Server at the specified index. User
variables are used to communicate data between the host and tasks operating on the Motion Server card.

Binary Command Implementation
procedure dms_SetUserBoolean(Number:longint; Value:longint);

begin
if ErrorCode <> 0 then

exit;
FifoReset;
FifoWriteWord(bc_SetUserBoolean);
FifoWriteWord(Number);
FifoWriteBoolean(Value);
FifoSendMessageAndWaitForResponse;
ErrorCode:=FifoReadWord;
end;

ActiveX Example
Msb.SetUserBoolean 5, true

See Also
UserSetBoolean

3-80

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

SetUserLongint

ActiveX Syntax
Public Sub SetUserLongint(ByVal Index as Long, ByVal Value as Long)

C Syntax
void dms_SetUserLongint(int Index, long value)

Pascal Syntax
procedure dms_SetUserLongint(Index:integer; Value:longint);

Description
SetUserLongint assigns the value the longint variable in Motion Server at the specified index. User
variables are used to communicate data between the host and tasks operating on the Motion Server card.

Binary Command Implementation
procedure dms_SetUserLongint(Index:longint; Value:longint);

begin
if ErrorCode <> 0 then

exit;
FifoReset;
FifoWriteWord(bc_SetUserLongint);
FifoWriteWord(Index);
FifoWriteLongint(Value);
FifoSendMessageAndWaitForResponse;
ErrorCode:=FifoReadWord;
end;

ActiveX Example
Msb.SetUserLongint 2, 20000

See Also
UserLongint

3-81

3Command Reference

SetUserSingle

ActiveX Syntax
Public Sub SetUserSingle(ByVal Index as Integer, ByVal Value as
Snigle)

C Syntax
void dms_SetUserSingle(int Index, single value)

Pascal Syntax
procedure dms_SetUserLongint(Index:integer; Value:single);

Description
SetUserSingle assigns the value the single variable in Motion Server at the specified index. User variables
are used to communicate data between the host and tasks operating on the Motion Server card.

Binary Command Implementation
procedure dms_SetUserSingle(Number:longint; Value:single);

begin
if ErrorCode <> 0 then

exit;
FifoReset;
FifoWriteWord(bc_SetUserSingle);
FifoWriteWord(Number);
FifoWriteSingle(Value);
FifoSendMessageAndWaitForResponse;
ErrorCode:=FifoReadWord;
end;

ActiveX Example
Msb.SetUserSingle 4, 1.4

See Also
SetUserSingle

3-82

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

SetZero

ActiveX Syntax
Public Sub SetZero(ByVal AxisNumber as Integer, ByVal Param As
Integer)

C Syntax
void dms_SetZero(int AxisNumber, int Param)

Pascal Syntax
procedure dms_SetZero(AxisNumber:integer; Param:integer);

Description
Motion Server implements PID servo control. The zero of a control loop is one of the primary
parameters used to set the servo’s compensation and primarily relates to the damping of the system. This
procedure sets the control law zero to be aZeroValue. Values in the range of 200 to 255 are not unusual.
Values greater than 255 are not legal.

Binary Command Implementation
procedure dms_SetZero(AxisNumber:integer; Param:integer);

begin
dms_AxisProcedureIntegerParam(bc_SetZero,AxisNumber,Param);
end;

ActiveX Example
Msb.SetZero 1, 232

See Also
Gain
Integrator
SetGain
SetIntegrator
Zero

3-83

3Command Reference

Speed

ActiveX Syntax
Public Function Speed(ByVal AxisNumber as Integer) As Long

C Syntax
long dms_Speed(int GroupNumber)

Pascal Syntax
function dms_Speed(GroupNumber:integer):longint;

Description
Speed returns the current setting of the speed that will be used by this axis group during trapezoidal
moves. The units are in counts per second.

Binary Command Implementation
function dms_Speed(GroupNumber:integer):longint;

begin
dms_Speed:=dms_AxisLongintFunction(bc_Speed,GroupNumber);
end;

ActiveX Example
Status.Caption=Msb.Speed 1

SeeAlso
TNAxis.Accel
TNAxis.Decel
TNAxis.SetAccel
TNAxis.SetDecel
TNAxis.SetSpeed

3-84

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

Stop/StopAxis

ActiveX Syntax
Public Sub StopAxis(ByVal AxisNumber as Integer)

C Syntax
void dms_Stop(int GroupNumber)

Pascal Syntax
procedure dms_Stop(GroupNumber:integer);

Description
Stop directs the axis group to slow down at the specified decel rate and stop motion. A TNAxis group
will remain coordinated during the stop. The calling program will wait until after the stop has finished
before continuing.

Binary Command Implementation
procedure dms_Stop(GroupNumber:integer);

begin
dms_AxisProcedure(bc_Stop,GroupNumber);
end;

ActiveX Example
Msb.StopAxis 1

SeeAlso
BeginStop
Abort

3-85

3Command Reference

T2AxisAppendArc

ActiveX Syntax
Public T2AxisAppendArc(ByVal GroupNumber as Integer, ByVal Radius as
long, ByVal InitialAngle as Single, ByVal DeltaAngle as Single)

C Syntax
void dms_T2AxisAppendArc(int GroupNumber,
 long Radius,
 float InitialAngle,
 float DeltaAngle)

Pascal Syntax
procedure dms_T2AxisAppendArc(GroupNumber:integer;

Radius:longint;
InitialAngle:single;
DeltaAngle:single);

Description
AppendArc adds a circular segment to the continuous path being constructed. The first parameter is the
radius of the arc. The InitialAngle indicates, in degrees, the tangent angle of the beginning of the arc. The
DeltaAngle indicates how many degrees of rotation should occur. Note that DeltaAngle can indicate
more than 360 degrees of rotation. Negative delta angles indicate curves to the right. Positive delta angles
indicates curves to the left. Angles are measured with the X pointing in direction 0 and Y pointing in
direction 90.

3-86

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

Binary Command Implementation
procedure dms_T2AxisAppendArc(GroupNumber:integer;

Radius:longint;
InitialAngle:single;
DeltaAngle:single);

begin
if ErrorCode <> 0 then

exit;
FifoReset;
FifoWriteWord(bc_T2AxisAppendArc);
FifoWriteWord(GroupNumber);
FifoWriteLongint(Radius);
FifoWriteSingle(InitialAngle);
FifoWriteSingle(DeltaAngle);
FifoSendMessageandWaitForResponse;
ErrorCode:=FifoReadWord;
end;

ActiveX Example
Msb.T2AxisAppendArc XYTable, 5000, 0 ,90

SeeAlso
Curved Trajectories
TNAxis.MoveAlongCurve
TNAxis.AppendMoveTo
TNAxis.AppendMoveToVector
TNAxis.AppendMoveByVector

3-87

3Command Reference

T3AxisAppendArc

ActiveX Syntax
Public Sub T3AxisAppendArc(ByVal GroupNumber as Integer, ByVal Radius
as long, ByVal InitialAngle As Single, ByVal DeltaAngle as Single,
ByVal DeltaZ As Long)

C Syntax
void dms_T3AxisAppendArc(int GroupNumber,
 long Radius,
 float InitialAngle,
 float DeltaAngle,
 long DeltaZ)

Pascal Syntax
procedure T3AxisAppendArc(

GroupNumber:word;
Radius:longint;
InitialAngle:single;
DeltaAngle:single;
DeltaZ:longint);

Description
AppendArc adds a circular segment to the continuous path being constructed. The first parameter is the
radius of the arc. The InitialAngle indicates, in degrees, the tangent angle of the beginning of the arc. The
DeltaAngle indicates how many degrees of rotation should occur. Note that DeltaAngle can indicate
more than 360 degrees of rotation. Negative delta angles indicate curves to the right. Positive delta angles
indicates curves to the left. Angles are measured with the X pointing in direction 0 and Y pointing in
direction 90. The last parameter, DeltaZ, indicates the change in Z position over the course of the arc.
AppendArc, when used with a T3Axis group, allows circular interpolation to occur in X and Y while linear
interpolation is occuring in Z.

3-88

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

Binary Command Implementation
procedure dms_T3AxisAppendArc(GroupNumber:integer;

Radius:longint;
InitialAngle:single;
DeltaAngle:single;
DeltaZ:longint);

begin
if ErrorCode <> 0 then

exit;
FifoReset;
FifoWriteWord(bc_T3AxisAppendArc);
FifoWriteWord(GroupNumber);
FifoWriteLongint(Radius);
FifoWriteSingle(InitialAngle);
FifoWriteSingle(DeltaAngle);
FifoWriteLongint(DeltaZ);
FifoSendMessageandWaitForResponse;
ErrorCode:=FifoReadWord;
end;

ActiveX Example
Msb.T3Axis.AppendArc XYZTable, 5000, 0, 90, 2000

SeeAlsoSeeAlso
Curved Trajectories
TNAxis.MoveAlongCurve
TNAxis.AppendMoveTo
TNAxis.AppendMoveToVector
TNAxis.AppendMoveByVector

3-89

3Command Reference

TNAxisAppendMoveBy

ActiveX Syntax
Public Sub T2AxisAppendMoveBy(ByVal GroupNumber as Integer,

ByVal Delta1 As Long,
ByVal Delta2 As Long)

Public Sub T3AxisAppendMoveBy(ByVal GroupNumber as Integer,
ByVal Delta1 As Long,
ByVal Delta2 As Long,
ByVal Delta3 As Long)

Public Sub T4AxisAppendMoveBy(ByVal GroupNumber as Integer,
ByVal Delta1 As Long,
ByVal Delta2 As Long,
ByVal Delta3 As Long,
ByVal Delta4 As Long)

Public Sub T5AxisAppendMoveBy(ByVal GroupNumber as Integer,
ByVal Delta1 As Long,
ByVal Delta2 As Long,
ByVal Delta3 As Long,
ByVal Delta4 As Long,
ByVal Delta5 As Long)

Public Sub T6AxisAppendMoveBy(ByVal GroupNumber as Integer,
ByVal Delta1 As Long,
ByVal Delta2 As Long,
ByVal Delta3 As Long,
ByVal Delta4 As Long,
ByVal Delta5 As Long,
ByVal Delta6 As Long)

3-90

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

C Syntax
void dms_T2AxisAppendMoveBy(int GroupNumber,
 long Delta1,
 long Delta2)

void dms_T3AxisAppendMoveBy(int GroupNumber,
 long Delta1,
 long Delta2,
 long Delta3)

void dms_T4AxisAppendMoveBy(int GroupNumber,
 long Delta1,
 long Delta2,
 long Delta3,
 long Delta4)

void dms_T5AxisAppendMoveBy(int GroupNumber,
 long Delta1,
 long Delta2,
 long Delta3,
 long Delta4,
 long Delta5)

void dms_T6AxisAppendMoveBy(int GroupNumber,
 long Delta1,
 long Delta2,
 long Delta3,
 long Delta4,
 long Delta5,
 long Delta6)

3-91

3Command Reference

Pascal Syntax
procedure dms_T2AxisAppendMoveBy(GroupNumber:word;

Delta1:longint;
Delta2:longint);

procedure dms_T3AxisAppendMoveBy(GroupNumber:word;
Delta1:longint;
Delta2:longint;
Delta3:longint);

procedure dms_T4AxisAppendMoveBy(GroupNumber:word;
Delta1:longint;
Delta2:longint;
Delta3:longint;
Delta4:longint);

procedure dms_T5AxisAppendMoveBy(GroupNumber:word;
Delta1:longint;
Delta2:longint;
Delta3:longint;
Delta4:longint;
Delta5:longint);

procedure dms_T6AxisAppendMoveBy(GroupNumber:word;
Delta1:longint;
Delta2:longint;
Delta3:longint;
Delta4:longint;
Delta5:longint;
Delta6:longint);

Description
AppendMoveBy adds an additional descriptive point, expressed in relative coordinates, to the end of a
curve description. The number of parameters corresponds to the dimension of the TNAxis.

3-92

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

Binary Command Implementation
The following is a 2 axis implementation. Other axis counts would be implemented by changing the
T2AxisVectorProcedure to the procedure with the correct dimension.

procedure dms_T2AxisAppendMoveBy(GroupNumber:word;
Delta1:longint;
Delta2:longint);

begin
dms_T2AxisVectorProcedure(bc_TNAxisAppendMoveBy,GroupNumber,

Delta1,Delta2);
end;

ActiveX Example
Msb.T2AxisAppendMoveBy XYTable, 1000, 2000

See Also
Curved Trajectories
TNAxis.MoveAlongCurve
TNAxis.AppendMoveTo
TNAxis.AppendMoveToVector
TNAxis.AppendMoveByVector

3-93

3Command Reference

TNAxisAppendMoveTo

ActiveX Syntax
Public Sub T2AxisAppendMoveTo(ByVal GroupNumber as Integer,

ByVal Destination1 As Long,
ByVal Destination2 As Long)

Public Sub T3AxisAppendMoveTo(ByVal GroupNumber as Integer,
ByVal Destination1 As Long,
ByVal Destination2 As Long,
ByVal Destination3 As Long)

Public Sub T4AxisAppendMoveTo(ByVal GroupNumber as Integer,
ByVal Destination1 As Long,
ByVal Destination2 As Long,
ByVal Destination3 As Long,
ByVal Destination4 As Long)

Public Sub T5AxisAppendMoveTo(ByVal GroupNumber as Integer,
ByVal Destination1 As Long,
ByVal Destination2 As Long,
ByVal Destination3 As Long,
ByVal Destination4 As Long,
ByVal Destination5 As Long)

Public Sub T6AxisAppendMoveTo(ByVal GroupNumber as Integer,
ByVal Destination1 As Long,
ByVal Destination2 As Long,
ByVal Destination3 As Long,
ByVal Destination4 As Long,
ByVal Destination5 As Long,
ByVal Destination6 As Long)

3-94

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

C Syntax
void dms_T2AxisAppendMoveTo(int GroupNumber,
 long Destination1,
 long Destination2)

void dms_T3AxisAppendMoveTo(int GroupNumber,
 long Destination1,
 long Destination2,
 long Destination3)

void dms_T4AxisAppendMoveTo(int GroupNumber,
 long Destination1,
 long Destination2,
 long Destination3,
 long Destination4)

void dms_T5AxisAppendMoveTo(int GroupNumber,
 long Destination1,
 long Destination2,
 long Destination3,
 long Destination4,
 long Destination5)

void dms_T6AxisAppendMoveTo(int GroupNumber,
 long Destination1,
 long Destination2,
 long Destination3,
 long Destination4,
 long Destination5,
 long Destination6)

3-95

3Command Reference

Pascal Syntax
procedure T2AxisAppendMoveTo(GroupNumber:word;

Destination1:longint;
Destination2:longint);

procedure T3AxisAppendMoveTo(GroupNumber:word;
Destination1:longint;
Destination2:longint;
Destination3:longint);

procedure T4AxisAppendMoveTo(GroupNumber:word;
Destination1:longint;
Destination2:longint;
Destination3:longint;
Destination4:longint);

procedure T5AxisAppendMoveTo(GroupNumber:word;
Destination1:longint;
Destination2:longint;
Destination3:longint;
Destination4:longint;
Destination5:longint);

procedure T6AxisAppendMoveTo(GroupNumber:word;
Destination1:longint;
Destination2:longint;
Destination3:longint;
Destination4:longint;
Destination5:longint;
Destination6:longint;

Description
AppendMoveTo adds an additional descriptive point, expressed in absolute coordinates, to the end of
a curve description. The number of parameters corresponds to the dimension of the TNAxis.

3-96

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

Binary Command Implementation
The following is a 4 axis implementation. Other axis counts would be implemented by changing the
T4AxisVectorProcedure to the procedure with the correct dimension.

procedure dms_T4AxisAppendMoveTo(GroupNumber:word;
 Destination1:longint;
 Destination2:longint;
 Destination3:longint;
 Destination4:longint);

 begin
 dms_T4AxisVectorProcedure(bc_TNAxisAppendMoveTo,GroupNumber,
 Destination1,Destination2,Destination3,Destination4);
 end;

ActiveX Example
Msb.T2AxisAppendMoveTo XYTable, 1000, 1000

SeeAlso
Curved Trajectories
TNAxis.MoveAlongCurve
TNAxis.AppendMoveBy
TNAxis.AppendMoveToVector
TNAxis.AppendMoveByVector

3-97

3Command Reference

TNAxisBeginMoveBy

ActiveX Syntax
Public Sub T2AxisBeginMoveBy(ByVal GroupNumber as Integer,

ByVal Delta1 As Long,
ByVal Delta2 As Long)

Public Sub T3AxisBeginMoveBy(ByVal GroupNumber as Integer,
ByVal Delta1 As Long,
ByVal Delta2 As Long,
ByVal Delta3 As Long)

Public Sub T4AxisBeginMoveBy(ByVal GroupNumber as Integer,
ByVal Delta1 As Long,
ByVal Delta2 As Long,
ByVal Delta3 As Long,
ByVal Delta4 As Long)

Public Sub T5AxisBeginMoveBy(ByVal GroupNumber as Integer,
ByVal Delta1 As Long,
ByVal Delta2 As Long,
ByVal Delta3 As Long,
ByVal Delta4 As Long,
ByVal Delta5 As Long)

Public Sub T6AxisBeginMoveBy(ByVal GroupNumber as Integer,
ByVal Delta1 As Long,
ByVal Delta2 As Long,
ByVal Delta3 As Long,
ByVal Delta4 As Long,
ByVal Delta5 As Long,
ByVal Delta6 As Long)

3-98

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

C Syntax
void dms_T1AxisBeginMoveBy(int GroupNumber,
 long DeltaPosition)

void dms_T2AxisBeginMoveBy(int GroupNumber,
 long DeltaPosition1,
 long DeltaPosition2)

void dms_T3AxisBeginMoveBy(int GroupNumber,
 long DeltaPosition1,
 long DeltaPosition2,
 long DeltaPosition3)

void dms_T4AxisBeginMoveBy(int GroupNumber,
 long DeltaPosition1,
 long DeltaPosition2,
 long DeltaPosition3,
 long DeltaPosition4)

void dms_T5AxisBeginMoveBy(int GroupNumber,
 long DeltaPosition1,
 long DeltaPosition2,
 long DeltaPosition3,
 long DeltaPosition4,
 long DeltaPosition5)

void dms_T6AxisBeginMoveBy(int GroupNumber,
 long DeltaPosition1,
 long DeltaPosition2,
 long DeltaPosition3,
 long DeltaPosition4,
 long DeltaPosition5,
 long DeltaPosition6)

3-99

3Command Reference

Pascal Syntax
procedure T1AxisBeginMoveBy(AxisNumber:word;

DeltaPosition:longint);

procedure T2AxisBeginMoveBy(GroupNumber:word;
DeltaPosition1:longint;
DeltaPosition2:longint);

procedure T3AxisBeginMoveBy(GroupNumber:word;
DeltaPosition1:longint;
DeltaPosition2:longint;
DeltaPosition3:longint);

procedure T4AxisBeginMoveBy(GroupNumber:word;
DeltaPosition1:longint;
DeltaPosition2:longint;
DeltaPosition3:longint;
DeltaPosition4:longint);

procedure T5AxisBeginMoveBy(GroupNumber:word;
DeltaPosition1:longint;
DeltaPosition2:longint;
DeltaPosition3:longint;
DeltaPosition4:longint;
DeltaPosition5:longint);

procedure T6AxisBeginMoveBy(GroupNumber:word;
DeltaPosition1:longint;
DeltaPosition2:longint;
DeltaPosition3:longint;
DeltaPosition4:longint;
DeltaPosition5:longint;
DeltaPosition6:longint);

3-100

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

Description
BeginMoveBy starts relative coordinated move by the specified position deltas but does not wait for the
move to finish. In actual use the "N" in TNAxisBeginMoveBy is replaced by the dimension of the
controlled group. For example, a 2 axis call would be T2AxisBeginMoveBy. The method requires as
many parameters as the dimension of the receiver axis group, ie a 2 axis group requires 2 parameters,
a 4 axis group requires 4 parameters. The motion is performed with a trapezoidal velocity profile based
on parameters set with the SetAccel , SetDecel , and SetSpeed methods. These parameters apply to the
vector path motion of the coordinated group rather than to any particular axis. BeginMoveBy returns
immediatly and does not wait for the motion to finish. For cases where it is important to “blocking”
program execution until the end of the move use MoveBy instead of BeginMoveBy. Use
MoveHasCompleted to determine when a move started with BeginMoveBy has finished.

Group Numbers required to perform the call is provided by the TNInit functions

Binary Command Implementation
The following is a 3 axis implementation. Other axis counts would be implemented by changing the
T3AxisVectorProcedure to the procedure with the correct dimension.

procedure dms_T3AxisBeginMoveBy(GroupNumber:word;
Delta1:longint;
Delta2:longint;
Delta3:longint);

begin
dms_T3AxisVectorProcedure(bc_TNAxisBeginMoveBy,GroupNumber,

Delta1,Delta2,Delta3);
end;

Errors
BeginMoveBy will escape if while in motion the resulting destination specified is “behind” the vector
path position or if the destination is so close that the axis group cannot accomplish the move at the
specified decel rate. In these cases the group will emit a MotionOverrunEscapeCode and come to a stop.

3-101

3Command Reference

ActiveX Example
Msb.T2AxisBeginMoveBy XYTable, 2000, 2000

SeeAlso
TNAxis.SetAccel
TNAxis.SetDecel
TNAxis.SetSpeed
TNAxis.MoveIsFinished
TNAxis.MoveBy
TNAxis.MoveTo
TNAxis.BeginMoveTo
MotionOverrunEscapeCode

3-102

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

dms_TNAxisBeginMoveTo

ActiveX Syntax
Public Sub T2AxisBeginMoveTo(ByVal GroupNumber as Integer,

ByVal Delta1 As Long,
ByVal Delta2 As Long)

Public Sub T3AxisBeginMoveTo(ByVal GroupNumber as Integer,
ByVal Delta1 As Long,
ByVal Delta2 As Long,
ByVal Delta3 As Long)

Public Sub T4AxisBeginMoveTo(ByVal GroupNumber as Integer,
ByVal Delta1 As Long,
ByVal Delta2 As Long,
ByVal Delta3 As Long,
ByVal Delta4 As Long)

Public Sub T5AxisBeginMoveTo(ByVal GroupNumber as Integer,
ByVal Delta1 As Long,
ByVal Delta2 As Long,
ByVal Delta3 As Long,
ByVal Delta4 As Long,
ByVal Delta5 As Long)

Public Sub T6AxisBeginMoveTo(ByVal GroupNumber as Integer,
ByVal Delta1 As Long,
ByVal Delta2 As Long,
ByVal Delta3 As Long,
ByVal Delta4 As Long,
ByVal Delta5 As Long,
ByVal Delta6 As Long)

3-103

3Command Reference

C Syntax
void dms_T1AxisBeginMoveTo(int GroupNumber,
 long Destination)

void dms_T2AxisBeginMoveTo(int GroupNumber,
 long Destination1,
 long Desintation2)

void dms_T3AxisBeginMoveTo(int GroupNumber,
 long Destination1,
 long Desintation2,
 long Destination3)

void dms_T4AxisBeginMoveTo(int GroupNumber,
 long Destination1,
 long Desintation2,
 long Destination3,
 long Destination4)

void dms_T5AxisBeginMoveTo(int GroupNumber,
 long Destination1,
 long Desintation2,
 long Destination3,
 long Destination4,
 long Destination5)

void dms_T6AxisBeginMoveTo(int GroupNumber,
 long Destination1,
 long Desintation2,
 long Destination3,
 long Destination4,
 long Destination5,
 long Destination6)

3-104

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

Pascal Syntax
procedure T2AxisBeginMoveTo(GroupNumber:word;

Destination1:longint;
Destination2:longint);

procedure T3AxisBeginMoveTo(GroupNumber:word;
Destination1:longint;
Destination2:longint;
Destination3:longint);

procedure T4AxisBeginMoveTo(GroupNumber:word;
Destination1:longint;
Destination2:longint;
Destination3:longint;
Destination4:longint);

procedure T5AxisBeginMoveTo(GroupNumber:word;
Destination1:longint;
Destination2:longint;
Destination3:longint;
Destination4:longint;
Destination5:longint);

procedure T6AxisBeginMoveTo(GroupNumber:word;
Destination1:longint;
Destination2:longint;
Destination3:longint;
Destination4:longint;
Destination5:longint;
Destination6:longint);

Description
BeginMoveTo starts an absolute coordinated move to the specified absolute position destinations but
does not wait for the move to finish. The "N" in TNAxisBeginMoveTo is replaced by the dimension
of the group being controlled, for example T2AxisBeginMoveTo for a 2 axis group. The method
requires as many parameters as the dimension of the receiver axis group, ie a 2 axis group requires 2
parameters, a 4 axis group requires 4 parameters. The motion is performed with a trapezoidal velocity
profile based on parameters set with the SetAccel , SetDecel , and SetSpeed methods. These parameters
apply to the vector path motion of the coordinated group rather than to any particular axis for
multidimensional axis groups. BeginMoveTo returns immediatly and does not wait for the motion to
finish. For cases where it is important to “block” program execution until the end of the move use
MoveTo instead of BeginMoveTo. Use MoveHasCompleted to determine when a move started with
BeginMoveTo has finished.

Group numbers required for this routine are provided by the TNInit functions.

3-105

3Command Reference

Binary Command Implementation
The following is a 5 axis implementation. Other axis counts would be implemented by changing the
T5AxisVectorProcedure to the procedure with the correct dimension.

procedure dms_T5AxisBeginMoveTo(GroupNumber:word;
Delta1:longint;
Delta2:longint;
Delta3:longint;
Delta4:longint;
Delta5:longint);

begin
dms_T5AxisVectorProcedure(bc_TNAxisBeginMoveTo,GroupNumber,

Delta1,Delta2,Delta3,Delta4,Delta5);
end;

Errors
BeginMoveTo will escape if while in motion the destination specified is “behind” the vector path
position or if the destination is so close that the receiver cannot accomplish the move at the specified decel
rate. In these cases an escape will occur with MotionOverrunEscapeCode and the receiver will stop.

ActiveX Example
Msb.T2AxisBeginMoveTo XYTable, 0,0

SeeAlso
TNAxis.SetAccel
TNAxis.SetDecel
TNAxis.SetSpeed
TNAxis.MoveIsFinished
TNAxis.MoveBy
TNAxis.MoveTo
TNAxis.BeginMoveTo
MotionOverrunEscapeCode

3-106

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

TNAxisDispose

ActiveX Syntax
Public Sub TNAxisDispose(ByVal GroupNumber as Integer)

C Syntax
void dms_TNAxisDispose(int GroupNumber)

Pascal Syntax
procedure dms_TNAxisDipose(GroupNumber:integer);

Description
The Motion Server command set is designed to support multiple client programs. Coordinated motion
is described by using GroupNumbers provided by TNAxisInit routines. When a client program is done
and exiting the client needs to tell Motion Server that it is finished with the resources that were allocated
so that another program can use them. This is done with dms_TNAxisDispose. dms_TNAxisDispose
is analagous to releasing memory after use so as to prevent a "memory leak". If dms_TNAxisDispose
is not used, an "axis leak" will occur and eventually Motion Server will indicate that there are no more
axis groups available for use.

ActiveX Example
Msb.TNAxisDispose XYTable

DLL Example
procedure PerformCoordinatedActivity;

var Group:integer;

begin
dms_SetMotorType(1,ServoMotor);
dms_SetMotorType(2,ServoMotor);
Group:=dms_T2AxisInit(1,2);
dms_SetAccel(Group,20000);
dms_SetDecel(Group,20000);
dms_SetSpeed(Group,1000);
dms_SetMotor(Group,on);
dms_T2AxisMoveBy(1000,2000);
dms_TNAxisDispose(Group);
end;

3-107

3Command Reference

TNAxisInit

ActiveX Syntax
Public Function T2AxisInit(

ByVal Axis1Number As Integer,
ByVal Axis2Number As Integer)

Public Function T3AxisInit(
ByVal Axis1Number As Integer,
ByVal Axis2Number As Integer,
ByVal Axis3Number As Integer)

Public Function T4AxisInit(
ByVal Axis1Number As Integer,
ByVal Axis2Number As Integer,
ByVal Axis3Number As Integer,
ByVal Axis4Number As Integer)

Public Function T5AxisInit(
ByVal Axis1Number As Integer,
ByVal Axis2Number As Integer,
ByVal Axis3Number As Integer,
ByVal Axis4Number As Integer,
ByVal Axis5Number As Integer)

Public Function T6AxisInit(
ByVal Axis1Number As Integer,
ByVal Axis2Number As Integer,
ByVal Axis3Number As Integer,
ByVal Axis4Number As Integer,
ByVal Axis5Number As Integer,
ByVal Axis6Number As Integer)

3-108

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

C Syntax
int dms_T2AxisInit(
 int Axis1Number,
 int Axis2Number)

int dms_T3AxisInit(
 int Axis1Number,
 int Axis2Number,
 int Axis3Number)

int dms_T4AxisInit(
 int Axis1Number,
 int Axis2Number,
 int Axis3Number,
 int Axis4Number)

int dms_T5AxisInit(
 int Axis1Number,
 int Axis2Number,
 int Axis3Number,
 int Axis4Number,
 int Axis5Number)

int dms_T6AxisInit(
 int Axis1Number,
 int Axis2Number,
 int Axis3Number,
 int Axis4Number,
 int Axis5Number,
 int Axis6Number)

3-109

3Command Reference

Pascal Syntax
function T2AxisInit(

Axis1Number:word;
Axis2Number:word):word;

function T3AxisInit(
Axis1Number:word;
Axis2Number:word;
Axis3Number:word):word;

function T4AxisInit(
Axis1Number:word;
Axis2Number:word;
Axis3Number:word;
Axis4Number:word):word;

function T5AxisInit(
Axis1Number:word;
Axis2Number:word;
Axis3Number:word;
Axis4Number:word;
Axis5Number:word):word;

function T6AxisInit(
Axis1Number:word;
Axis2Number:word;
Axis3Number:word;
Axis4Number:word;
Axis5Number:word;
Axis6Number):word;

Description
TNAxisInit is used to associate axes into a coordinated group and returns a Group Number to reference
the group in the future. In actual use, the "N" in TNAxisInit is replaced by the dimension of the group
being constructed, i.e. T2AxisInit for a 2 axis group or T6AxisInit for a 6 axis group. In coordinated
motion commands, the group number is the "handle" that refers to this particular axis association. The
axis are specified with their axis numbers ranging from 1 to 16. The routine requiers as many axis
parameters as dimension of the group being constructed. The order the axes are indicated here becomes
the order of parameters used to describe coordinated motion. The first axis listed here receives the first
coordinate number in motion commands. Coordinated motion can only be performed on groups that
have been initialized.

3-110

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

Binary Command Implementation
function dms_TNAxisInit(

Axis1Number:word;
Axis2Number:word; {possibly other axis parameters}

var ErrorCode:integer):word;

begin
if ErrorCode <> 0 then

exit;
FifoReset;
FifoWriteWord(bc_T4AxisInit); {or T2AxisInit etc.}
FifoWriteWord(Axis1Number);
FifoWriteWord(Axis2Number);
{possibly other writes for other dimensions}
FifoSendMessageAndWaitForResponse;
ErrorCode:=FifoReadWord;
TNAxisInit:=FifoReadWord;
end;

ActiveX Example
XYTable=Msb.T2AxisInit 1,2

DLL Example
GroupWith4Axes:=T4AxisInit(1,2,3,4);
GroupWith6Axes:=T6AxisInit(5,6,7,8,9,10);

3-111

3Command Reference

TNAxisMoveBy

ActiveX Syntax
Public Sub T2AxisMoveBy(ByVal GroupNumber as Integer,

ByVal Delta1 As Long,
ByVal Delta2 As Long)

Public Sub T3AxisMoveBy(ByVal GroupNumber as Integer,
ByVal Delta1 As Long,
ByVal Delta2 As Long,
ByVal Delta3 As Long)

Public Sub T4AxisMoveBy(ByVal GroupNumber as Integer,
ByVal Delta1 As Long,
ByVal Delta2 As Long,
ByVal Delta3 As Long,
ByVal Delta4 As Long)

Public Sub T5AxisMoveBy(ByVal GroupNumber as Integer,
ByVal Delta1 As Long,
ByVal Delta2 As Long,
ByVal Delta3 As Long,
ByVal Delta4 As Long,
ByVal Delta5 As Long)

Public Sub T6AxisMoveBy(ByVal GroupNumber as Integer,
ByVal Delta1 As Long,
ByVal Delta2 As Long,
ByVal Delta3 As Long,
ByVal Delta4 As Long,
ByVal Delta5 As Long,
ByVal Delta6 As Long)

3-112

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

C Syntax
void dms_T1AxisMoveBy(int GroupNumber,
 long DeltaPosition)

void dms_T2AxisMoveBy(int GroupNumber,
 long DeltaPosition1,
 long DeltaPosition2)

void dms_T3AxisMoveBy(int GroupNumber,
 long DeltaPosition1,
 long DeltaPosition2,
 long DeltaPosition3)

void dms_T4AxisMoveBy(int GroupNumber,
 long DeltaPosition1,
 long DeltaPosition2,
 long DeltaPosition3,
 long DeltaPosition4)

void dms_T5AxisMoveBy(int GroupNumber,
 long DeltaPosition1,
 long DeltaPosition2,
 long DeltaPosition3,
 long DeltaPosition4,
 long DeltaPosition5)

void dms_T6AxisMoveBy(int GroupNumber,
 long DeltaPosition1,
 long DeltaPosition2,
 long DeltaPosition3,
 long DeltaPosition4,
 long DeltaPosition5,
 long DeltaPosition6)

3-113

3Command Reference

Pascal Syntax
procedure T1AxisMoveBy(AxisNumber:word;

DeltaPosition:longint);

procedure T2AxisMoveBy(GroupNumber:word;
DeltaPosition1:longint;
DeltaPosition2:longint);

procedure T3AxisMoveBy(GroupNumber:word;
DeltaPosition1:longint;
DeltaPosition2:longint;
DeltaPosition3:longint);

procedure T4AxisMoveBy(GroupNumber:word;
DeltaPosition1:longint;
DeltaPosition2:longint;
DeltaPosition3:longint;
DeltaPosition4:longint);

procedure T5AxisMoveBy(GroupNumber:word;
DeltaPosition1:longint;
DeltaPosition2:longint;
DeltaPosition3:longint;
DeltaPosition4:longint;
DeltaPosition5:longint);

procedure T6AxisMoveBy(GroupNumber:word;
DeltaPosition1:longint;
DeltaPosition2:longint;
DeltaPosition3:longint;
DeltaPosition4:longint;
DeltaPosition5:longint;
DeltaPosition6:longint);

Description
TNAxisMoveBy performs a relative coordinated move by the specified position deltas. In actual use,
the "N" in TNAxis... is replaced by the dimension of the group being directed, i.e. T3AxisMoveBy for
a 3 axis group. The method requires as many parameters as the dimension of the receiver axis group,
ie a 2 axis group requires 2 parameters, a 4 axis group requires 4 parameters. The motion is performed
with a trapezoidal velocity profile based on parameters set with the SetAccel , SetDecel , and SetSpeed
methods. These parameters apply to the vector path motion of the coordinated group rather than to any
particular axis. MoveBy does not return until the motion has been accomplished. “Blocking” program
execution until the end of the move may be helpful for synchronizing the next event, ie don’t drill the
hole until you get to the destination. Some appllications need to continue execution even though the
destination has not yet been achieved. For these cases use BeginMoveBy which starts the move and
immediately returns to continue with the next instruction.

Group Numbers are provided by TNAxisInit routines.

Binary Command Implementation

3-114

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

The following is a 2 axis implementation. Other axis counts would be implemented by changing the
T2AxisVectorProcedure to the procedure with the correct dimension.

procedure dms_T2AxisMoveBy(GroupNumber:word;
Delta1:longint;
Delta2:longint);

begin
dms_T2AxisVectorProcedure(bc_TNAxisMoveBy,GroupNumber,

Delta1,Delta2);
end;

ActiveX Example
Msb.T2AxisMoveBy XYTable, 2000, 4000

DLL Example
T3AxisMoveBy(My3AxisGroup,2000,4000,6000);
T5AxisMoveBy(My5AxisGroup,-1000,0,2000,1000,5000);

Errors
MoveBy will escape if while in motion the new destination specified is “behind” the vector path position
or if the destination is so close that the axis group cannot accomplish the move at the specified decel rate.
In these cases the group will emit a MotionOverrunEscapeCode and come to a stop.

SeeAlso
TNAxis.SetAccel
TNAxis.SetDecel
TNAxis.SetSpeed
TNAxis.MoveTo
MotionOverrunEscapeCode

3-115

3Command Reference

TNAxisMoveTo

ActiveX Syntax
Public Sub T2AxisMoveTo(ByVal GroupNumber as Integer,

ByVal Destination1 As Long,
ByVal Destination2 As Long)

Public Sub T3AxisMoveTo(ByVal GroupNumber as Integer,
ByVal Destination1 As Long,
ByVal Destination2 As Long,
ByVal Destination3 As Long)

Public Sub T4AxisMoveTo(ByVal GroupNumber as Integer,
ByVal Destination1 As Long,
ByVal Destination2 As Long,
ByVal Destination3 As Long,
ByVal Destination4 As Long)

Public Sub T5AxisMoveTo(ByVal GroupNumber as Integer,
ByVal Destination1 As Long,
ByVal Destination2 As Long,
ByVal Destination3 As Long,
ByVal Destination4 As Long,
ByVal Destination5 As Long)

Public Sub T6AxisMoveTo(ByVal GroupNumber as Integer,
ByVal Destination1 As Long,
ByVal Destination2 As Long,
ByVal Destination3 As Long,
ByVal Destination4 As Long,
ByVal Destination5 As Long,
ByVal Destination6 As Long)

3-116

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

C Syntax
void dms_T1AxisMoveTo(int AxisNumber,
 long Destination)

void dms_T2AxisMoveTo(int GroupNumber,
 long Destination1,
 long Destination2)

void dms_T3AxisMoveTo(int GroupNumber,
 long Destination1,
 long Destination2,
 long Destination3)

void dms_T4AxisMoveTo(int GroupNumber,
 long Destination1,
 long Destination2,
 long Destination3,
 long Destination4)

void dms_T5AxisMoveTo(int GroupNumber,
 long Destination1,
 long Destination2,
 long Destination3,
 long Destination4,
 long Destination5)

void dms_T6AxisMoveTo(int GroupNumber,
 long Destination1,
 long Destination2,
 long Destination3,
 long Destination4,
 long Destination5,
 long Destination6)

3-117

3Command Reference

Pascal Syntax
procedure T1AxisMoveTo(AxisNumber:word;

Destination:longint);

procedure T2AxisMoveTo(GroupNumber:word;
Destination1:longint;
Destination2:longint);

procedure T3AxisMoveTo(GroupNumber:word;
Destination1:longint;
Destination2:longint;
Destination3:longint);

procedure T4AxisMoveTo(GroupNumber:word;
Destination1:longint;
Destination2:longint;
Destination3:longint;
Destination4:longint);

procedure T5AxisMoveTo(GroupNumber:word;
Destination1:longint;
Destination2:longint;
Destination3:longint;
Destination4:longint;
Destination5:longint);

procedure T6AxisMoveTo(GroupNumber:word;
Destination1:longint;
Destination2:longint;
Destination3:longint;
Destination4:longint;
Destination5:longint;
Destination6:longint);

Description
TNAxisMoveTo performs an absolute coordinated move to the specified destination. In actual use, the
"N" in TNAxis is replaced by the dimension of the group, i.e. T2AxisMoveTo. The number of
parameters provided is the same as the dimension of the axis group, ie a 2 axis group requires 2
parameters, a 4 axis group requires 4 parameters. The motion is performed with a trapezoidal velocity
profile based on parameters set with the SetAccel , SetDecel , and SetSpeed methods. These parameters
apply to the vector path motion of the coordinated group rather than to any particular axis. TNAxisMoveTo
does not return until the motion has been accomplished. “Blocking” program execution until the end
of the move may be helpful for synchronizing the next event, ie don’t drill the hole until you get to the
destination. Some appllications need to continue execution even though the destination has not yet been
achieved. For these cases use TNAxisBeginMoveTo which starts the move and immediately returns to
continue with the next instruction.

3-118

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

Binary Command Implementation
The following is a 3 axis implementation. Other axis counts would be implemented by changing the
T3AxisVectorProcedure to the procedure with the correct dimension.

procedure dms_T3AxisMoveTo(GroupNumber:word;
Destination1:longint;
Destination2:longint;
Destination3:longint);

begin
dms_T3AxisVectorProcedure(bc_TNAxisMoveTo,GroupNumber,

Destination1,Destination2,Destination3);
end;

ActiveX Example
Msb.T2AxisMoveTo XYTable, 1, 2

DLL Example
T2AxisMoveTo(My2AxisGroupNumber,2000,4000,ErrorCode);
T4AxisMoveTo(Another4AxisGroupNumber,0,0,ErrorCode);

Errors
MoveTo will escape if while in motion the destination specified is “behind” the vector path position or
if the destination is so close that the axis group cannot accomplish the move at the specified decel rate.
In these cases the group will emit a MotionOverrunEscapeCode and come to a stop.

SeeAlso
TNAxis.SetAccel
TNAxis.SetDecel
TNAxis.SetSpeed
MotionOverrunEscapeCode
TNAxis.MoveBy

3-119

3Command Reference

UserBoolean

ActiveX Syntax
Public Function UserBoolean(ByVal Index As Long) As Boolean

C Syntax
int dms_UserBoolean(int Index)

Pascal Syntax
function dms_UserBoolean(Index:integer):boolean;

Description
UserBoolean queries the value of the boolean variable in Motion Server at the specified index. User
variables are used to communicate data between the host and tasks operating on the Motion Server card.

Binary Command Implementation
function dms_UserBoolean:boolean;

begin
dms_UserBoolean:=

dms_BooleanFunctionIntegerParam(bc_UserBoolean,Index);
end;

ActiveX Example
Status.Caption=Msb.UserBoolean 4

See Also
SetUserBoolean

3-120

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

UserHasDisabled

ActiveX Syntax
Public Function UserHasDisabled as Boolean

C Syntax
int dms_UserHasDisabled()

Pascal Syntax
function dms_UserHasDisabled:boolean;

Description
If the User Disable input is not held low this function returns true indicating that the user is attempting
to disable the system.

Binary Command Implementation
function dms_UserHasDisabled:boolean;

begin
dms_UserHasDisabled:=dms_BooleanFunction(bc_UserHasDisabled);
end;

ActiveX Example
if Msb.UserHasDisabled then

MsbBox "Release EStop Switch"
End If

See Also
ResetWatchdog
WatchdogHasTripped

3-121

3Command Reference

UserLongint

ActiveX Syntax
Public Function UserLongint(ByVal Index As Long) As Long

C Syntax
long dms_UserLongint(int Index)

Pascal Syntax
function dms_UserLongint(Index:integer):Longint;

Description
UserLongint queries the value of the longint variable in Motion Server at the specified index. User
variables are used to communicate data between the host and tasks operating on the Motion Server card.

Binary Command Implementation
function dms_UserLongint(Index:integer):longint;

begin
if ErrorCode <> 0 then

begin
dms_UserLongint:=0;
exit;
end;

FifoReset;
FifoWriteWord(bc_UserLongint);
FifoWriteWord(Index);
FifoSendMessageAndWaitForResponse;
ErrorCode:=FifoReadWord;
if ErrorCode=0 then

dms_UserLongint:=FifoReadLongint
else

dms_UserLongint:=0;
end;

ActiveX Example
Status.Caption=Msb.UserLongint 4

See Also
SetUserLongint

3-122

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

UserSingle

ActiveX Syntax
Public Function UserSingle(ByVal Index As Long) As Single

C Syntax
single dms_UserSingle(int Index)

Pascal Syntax
function dms_UserSingle(Index:integer):Single;

Description
UserSingle queries the value of the single precision floating point variable in Motion Server at the
specified index. User variables are used to communicate data between the host and tasks operating on
the Motion Server card.

Binary Command Implementation
function dms_UserSingle(Index:integer):single;

begin
if ErrorCode <> 0 then

begin
dms_UserSingle:=0;
exit;
end;

FifoReset;
FifoWriteWord(bc_UserSingle);
FifoWriteWord(Number);
FifoSendMessageAndWaitForResponse;
ErrorCode:=FifoReadWord;
if ErrorCode=0 then

dms_UserSingle:=FifoReadSingle
else

dms_UserSingle:=0;
 end;

3-123

3Command Reference

ActiveX Example
Status.Caption=Msb.UserSingle 7

See Also
SetUserSingle

3-124

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

WatchdogHasTripped

ActiveX Syntax
Public Function WatchdogHasTripped () as Boolean

C Syntax
int dms_WatchdogHasTripped()

Pascal Syntax
function dms_WatchdogHasTripped:boolean;

Definition
The watchdog safety system will shut down servo activity if the processor fails to respond to the timer
event correctly. This function indicates if the watchdog system has shut down activity.

Binary Command Implementation
function dms_WatchdogHasTripped:boolean;

begin
dms_WatchdogHasTripped:=

dms_BooleanFunction(bc_WatchdogHasTripped);
end;

ActiveX Example
if Msb.WatchdogHasTripped then

MsgBox "Safety System Shutdown Machine"
End If

DLL Example
....

If WatchdogHasTripped then
 Writeln(‘System has shutdown’);
....

See Also
ResetWatchdog

3-125

3Command Reference

Zero

ActiveX Syntax
Public Function Zero(ByVal AxisNumber as Integer) As Integer

C Syntax
int dms_Zero(int AxisNumber)

Pascal Syntax
function dms_Zero(AxisNumber:integer):integer;

Description
Motion Server and SI-3000 implement PID control. This function returns the current value of the
control law zero, one of the primary compensation parameters.

Binary Command Implementation
function dms_Zero(AxisNumber:integer):integer;

begin
dms_Zero:=dms_AxisIntegerFunction(bc_Zero,AxisNumber);
end;

ActiveX Example
Status.Caption=Msb.Zero 3

See Also
Gain
Integrator
SetIntegrator
SetGain
SetZero

3-126

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

4-1

4Chapter

4) Visual Basic DLL Examples
Objective

The following examples illustrate how to use the command set to
perform basic motion. The basic pattern of use is to successfully
allocate a channel of communication and select binary communica-
tion during machine startup, send motion commands to perform
machine operation during machine operation, and release the chan-
nel when the application is finished.

The examples shown are done with Visual Basic 5.0 Professional
Edition. The only step needed to include the motion commands into
your Visual Basic project is to select from the Visual Basic Menu
Project|Add Module and choose the DMS_VB32.BAS file located in
the C:\DOULOI\DMS_BC32 directory. This file contains declara-
tions that refer to the actual motion commands found in the
DMS_VB32.DLL stored in the Windows directory.

Setting Controller Parameters and Performing Motion
The following program sets motor 1 to to be a stepper motor, turns
the motor on, sets the accel, decel, and speed, and moves by 2000
steps. The application looks like the following:

4-2

Instruction Manual for Motion Server and Binary Command Interpreter

It is necessary to remember if a successful connection has been made
to the controller to know if submitting commands is legal or not. To
remember the condition of the channel a variable will be declared in
the Declarations section of the module:

dim DmsOpen as Boolean

This boolean is then used in the Form Load procedure in the follow-
ing way:

Private Sub Form_Load()
DmsOpen = dms_AllocateChannel
If Not DmsOpen Then

MsgBox "Unable to Allocate Channel"
Else

dms_SelectBinaryCommunication
dms_ResetErrorCode
dms_SetMotorType 1, 0
dms_SetSpeed 1, 1000
dms_SetAccel 1, 10000
dms_SetDecel 1, 10000
dms_SetMotor 1, 1
If dms_ErrorCode <> 0 Then

MsgBox "Error in Controller Setup"
End If
End Sub

The dms_AllocateChannel command is used first. This returns a
value of zero (for false), or not-zero (for true) indicating success in
allocating a channel. If the channel does not allocate then the func-
tion dms_ErrorCode explains why. The channel might not allocate
for a number of reasons including:

Error 1009 - Windows driver not properly setup

Error 1010 - Communication Timeout

Error 1011 - Controller is not present in computer

After getting a "true" value for dms_AllocateChannel, the command
dms_SelectBinaryCommunication is used. Presently, this function
does not perform a function but is a place-holder in application
programs for future compatibility with other interpreter formats.

4-3

4Visual Basic DLL Examples

The command dms_ResetErrorCode is used to clear any pending
errors that may have been reported. Once an error occurs, as re-
ported through the dms_ErrorCode function, subsequent motion
commands will be ignored. The error code should be checked and if
not 0, reset with the command dms_ResetErrorCode during pro-
gram execution as part of the host program error management strat-
egy.

The commands that follow are used to initialize the first axis in the
system. SetMotorType is used to configure axis 1 to be a stepper
motor. Speed, Accel, and Decel settings are made for the motor. The
motor is then turned on and is ready for movement.

On the form is a Move X button which has the following click
procedure:

Private Sub TestButton_Click()
if DmsOpen then
 dms_T1AxisBeginMoveBy 1, 400
End If
End Sub

This button checks to see if the channel is open and if it is performs
the command, dms_T1AxisBeginMoveBy, a relative move command
for axis 1 to produce movement of 400 counts. BeginMoveBy imme-
diately returns flow to VisualBasic after starting the motion of the
axis. BeginMoveBy does not wait for the move to finish.

The form terminate procedure looks like the following:

Private Sub Form_Terminate()
If DmsOpen then
 dms_SetMotor 1, 0
 dms_ReleaseChannel
End If
End Sub

Here the motor is turned off and the command
dms_ReleaseChannel is used to indicate that the host program is
done with the controller.

4-4

Instruction Manual for Motion Server and Binary Command Interpreter

Monitoring Controller Status
The following program continually reports the position of the axis 1
encoder:

The form load and form terminate methods for this are the same as
for the first example. The display control is named "Status". The
activity of reporting the position is performed by a timer routine
with the following timer event:

Private Sub Timer1_Timer()
If DmsOpen Then
 Status = dms_EncoderPosition(1)
End If
End Sub

The dynamic link library currently being supplied is not re-entranct.
Accordingly it is not appropriate to send dms commands from sepa-
rate VB threads however timer events que in the Windows message
loop permitting status timer events to monitor the controller while
motion commands are also sent to the controller.

5-1

5Chapter

5) C Language DLL Examples
Objective

These examples illustrate the general pattern of use of the driver interface. Examples also
illustrate particular controller functions. If there is an example you would like to see that is
not present, please contact Douloi for sample code (and look for your question-and-
answer in the next version of the manual!).

C Example Framework
These examples were compiled with Turbo C++ for Windows. A Windows application
named BIN_DEMO.CPP was made using Object Windows Library that contains a single
"Start" menu selection. This start menu causes the following sections of code to operate
and illustrate operation of the binary command functions. It is not necessary to understand
this OWL application to benefit from the motion behavior that is consolidated in the
CMStart function.

// Borland Turbo C++ Example Framework

// The following example is based on a Borland
// Object Windows Library demo program and must
// be compiled with OWL

#include <owl.h>
#include "g:\bin_cmnd\bin_demo.h"
#include "g:\bin_cmnd\bin_cmnd.cpp"

class TMotionApp : public TApplication {
public:
 TMotionApp(LPSTR Name, HINSTANCE hInstance,

 HINSTANCE hPrevInstance, LPSTR lpCmd,
 int nCmdShow)

 : TApplication(Name, hInstance,
 hPrevInstance, lpCmd, nCmdShow) {};

 virtual void InitMainWindow();
};

class TExampleWindow : public TWindow {
public:
 TExampleWindow(PTWindowsObject AParent, LPSTR ATitle);
 virtual void CMStart(TMessage& Msg) = [CM_FIRST + CM_START];
};

5-2

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

TExampleWindow::TExampleWindow(PTWindowsObject AParent, LPSTR ATitle)
 : TWindow(AParent, ATitle)
{
 AssignMenu("COMMANDS");
}

void TExampleWindow::CMStart(TMessage&)
{
 /* Example Code goes in here */
}

void TMotionApp::InitMainWindow()
{
 MainWindow = new TExampleWindow(NULL, "Driver Example");
}

int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmd, int nCmdShow)

{
 TMotionApp MotionApp("Driver Example", hInstance, hPrevInstance,

lpCmd, nCmdShow);
 MotionApp.Run();
 return(MotionApp.Status);
}

5-3

5C Language DLL Examples

Setting Controller Parameters and Performing Motion
This program sets motor 1 to be a stepper motor, turns the motor on, sets the acceleration,
deceleration, and speed, and causes the motor to move by 2000 steps.

void TExampleWindow::CMStart(TMessage&)
{
 if (! dms_AllocateChannel())
 {
 MessageBox(HWindow,"Unable to Allocate Channel","Error",MB_OK);
 return;
 };

 dms_ResetErrorCode();
 dms_SelectBinaryCommunication();
 dms_SetMotorType(1,StepperMotor);
 dms_SetMotor(1,1);
 dms_SetAccel(1,10000);
 dms_SetDecel(1,10000);
 dms_SetSpeed(1,1000);
 dms_T1AxisMoveBy(1,2000);
 dms_ReleaseChannel();

 if (dms_ErrorCode != 0)
 MessageBox(HWindow,"Motion Problem","Error",MB_OK);
 else
 MessageBox(HWindow,"Test Done","Status",MB_OK);
}

5-4

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

Single Axis Motion Pattern
The following program directs Axis 1 to operate as a stepper motor and move in a multiple
move pattern.

void TExampleWindow::CMStart(TMessage&)
{
 if (! dms_AllocateChannel())
 {
 MessageBox(HWindow,"Unable to Allocate Channel","Error",MB_OK);
 return;
 };

 dms_ResetErrorCode();
 dms_SelectBinaryCommunication();

 dms_ResetWatchdog();
 dms_SetMotorType(1,StepperMotor);
 dms_SetAccel(1,20000);
 dms_SetDecel(1,20000);
 dms_SetSpeed(1,1500);
 dms_SetMotor(1,1);

 dms_SetActualPosition(1,0);
 dms_T1AxisMoveBy(1,2000);
 dms_T1AxisMoveBy(1,-4000);
 dms_T1AxisMoveTo(1,0);
 dms_SetMotor(1,0);

 dms_ReleaseChannel();

 if (dms_ErrorCode != 0)
 MessageBox(HWindow,"Motion Problem","Error",MB_OK);
 else
 MessageBox(HWindow,"Test Done","Status",MB_OK);
}

5-5

5C Language DLL Examples

Coordinated Motion
This program performs coordinated motion and produces a diamond shape with axis 1 and
2. These axis are associated into a coordianted group that is referenced with the name
"DiamondAxes".

void TExampleWindow::CMStart(TMessage&)
{
 int DiamondAxes;

 if (! dms_AllocateChannel())
 {
 MessageBox(HWindow,"Unable to Allocate Channel","Error",MB_OK);
 return;
 };

 dms_ResetErrorCode();
 dms_SelectBinaryCommunication();

 dms_SetMotorType(1,StepperMotor);
 dms_SetMotorType(2,StepperMotor);

 DiamondAxes=dms_T2AxisInit(1,2);
 dms_SetAccel(DiamondAxes,20000);
 dms_SetDecel(DiamondAxes,20000);
 dms_SetSpeed(DiamondAxes,1500);
 dms_SetMotor(DiamondAxes,1);

 dms_T2AxisMoveBy(DiamondAxes,2000,2000);
 dms_T2AxisMoveBy(DiamondAxes,-2000,2000);
 dms_T2AxisMoveBy(DiamondAxes,-2000,-2000);
 dms_T2AxisMoveBy(DiamondAxes,2000,-2000);

 dms_SetMotor(DiamondAxes,0);
 dms_ReleaseChannel();
 if (dms_ErrorCode != 0)
 MessageBox(HWindow,"Motion Problem","Error",MB_OK);
 else
 MessageBox(HWindow,"Test Done","Status",MB_OK);
}

5-6

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

Curved Motion
This program performs coordinated motion along a continuous curved path

void TExampleWindow::CMStart(TMessage&)
{
 int CurveAxes;

 if (! dms_AllocateChannel())
 {
 MessageBox(HWindow,"Unable to Allocate Channel","Error",MB_OK);
 return;
 };

 dms_ResetErrorCode();
 dms_SelectBinaryCommunication();

 dms_SetMotorType(1,StepperMotor);
 dms_SetMotorType(2,StepperMotor);

 CurveAxes=dms_T2AxisInit(1,2);
 dms_SetAccel(CurveAxes,20000);
 dms_SetDecel(CurveAxes,20000);
 dms_SetSpeed(CurveAxes,1500);
 dms_SetMotor(CurveAxes,1);

 dms_Clear(CurveAxes);
 dms_T2AxisAppendMoveBy(CurveAxes,2000,0);
 dms_T2AxisAppendArc(CurveAxes,500,0,-90);
 dms_T2AxisAppendMoveBy(CurveAxes,0,2000);
 dms_T2AxisAppendArc(CurveAxes,500,90,-90);
 dms_T2AxisAppendMoveBy(CurveAxes,-2000,0);
 dms_T2AxisAppendArc(CurveAxes,500,180,-90);
 dms_T2AxisAppendMoveBy(CurveAxes,0,-2000);
 dms_T2AxisAppendArc(CurveAxes,500,270,-90);
 dms_BeginMoveAlongCurve(CurveAxes);

/* check for completion with dms_MoveIsFinished(CurveAxes) and do other
things */

 dms_SetMotor(CurveAxes,0);
 dms_TNAxisDispose(CurveAxes);
 dms_ReleaseChannel();
 if (dms_ErrorCode != 0)
 MessageBox(HWindow,"Motion Problem","Error",MB_OK);
 else
 MessageBox(HWindow,"Test Done","Status",MB_OK);
}

6-1

6Chapter

6) Pascal DLL Examples
Objective

Chapter 3 explains command operation by showing the binary
command structure in terms of this abstraction. Peeking ahead to
commands described in chapter 3, the following examples illustrate
the sequence of use of the hardware abstraction shown. Normally the
channel is allocated when a program starts and released before the
program closes. Here the entire process is shown together only to
illustrate a complete communication exercise in a minimum ex-
ample.

Setting Controller Parameters and Performing Motion
The following program sets motor to to be a stepper motor, turns the
motor on, sets the accel, decel, and speed, and moves by 2000 steps.

program PerformStepperMoves;

include HW_ABS.INC

begin
ChannelAddress:=GetNextChannelAddress;
if ChannelAddress=0 then

begin
writeln('Unable to allocate channel');
exit;
end;

ClearErrorCode;
SelectBinaryCommunication;

dms_SetMotorType(1,ServoMotor);
dms_SetAccel(1,20000);
dms_SetDecel(1,20000);
dms_SetSpeed(2000);
dms_SetMotor(1,On);
dms_T1AxisMoveBy(1,2000);

if ErrorCode <> 0 then
 writeln('Error encountered: ',ErrorCode);
ReleaseChannel;
end.

6-2

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

Single Axis Motion Pattern
The following program directs Axis 1 to operate as a stepper motor
and move in a multiple move pattern.

program PerformStepperMoves;

include HW_ABS.INC

begin
ChannelAddress:=GetNextChannelAddress;
if ChannelAddress=0 then

begin
writeln('Unable to allocate channel');
exit;
end;

ClearErrorCode;
SelectBinaryCommunication;

dms_SetMotorType(1,ServoMotor);
dms_SetAccel(1,20000);
dms_SetDecel(1,20000);
dms_SetSpeed(2000);

dms_SetMotor(1,On);
dms_T1AxisMoveBy(1,2000);
dms_T1AxisMoveBy(1,-4000);
dms_T1MoveBy(1,2000);

dms_SetMotor(1,off);

if ErrorCode <> 0 then
 writeln('Error encountered: ',ErrorCode);
ReleaseChannel;
end.

6-3

6Pascal DLL Examples

Coordinated Motion
This program performs coordinated motion and produces a diamond
shape with axis 1 and 2.

program MoveDiamond;

include HW_ABS.INC

var AxisScanner:integer;
var DiamondAxes:integer;

begin
ChannelAddress:=GetNextChannelAddress;
if ChannelAddress=0 then

begin
writeln('Unable to allocate channel');
exit;
end;

ClearErrorCode;
SelectBinaryCommunication;

for AxisScanner:=1 to 2 do
begin
dms_SetMotorType(AxisScanner,ServoMotor);
dms_SetGain(AxisScanner,30);
dms_SetZero(AxisScanner,232);
dms_SetErrorLimit(AxisScanner,200);
end;

DiamondAxes:=T2AxisInit(1,2);

dms_SetMotor(DiamondAxes,on);

dms_T2AxisMoveBy(DiamondAxes, 2000, 2000);
dms_T2AxisMoveBy(DiamondAxes, 2000,-2000);
dms_T2AxisMoveBy(DiamondAxes,-2000,-2000);
dms_T2AxisMoveBy(DiamondAxes,-2000, 2000);

dms_SetMotor(DiamondAxes,off);

if ErrorCode <> 0 then
 writeln('Error encountered: ',ErrorCode);
ReleaseChannel;
end.

6-4

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

7-1

7Chapter

7) Visual Basic ActiveX
Examples
Objective

The following examples illustrate how to use the ActiveX control to
perform basic motion. The steps required to setup and use the
Ethernet systems are shown and described.

Preparing the Host for Ethernet Communication
The design intent is for the host computer to communicate to an
ethernet-equipped Motion Server Block on an exclusive network
composed of just the host, a cross-over ethernet cable, and the MSB.

The host must share the same "subnet" as the MSB. The MSB IP
address is 84.83.83.1. Douloi Automation suggests that you use a host
IP address of 84.83.83.2. To change the host IP address right click on
"Network Neighborhood", Select the TCP/IP configuration that is
associated with the ethernet card you will plug your cable into and
select "Properties". From the properties page check "Specify an IP
Address". Use the IP address 84.83.83.1 and the subnet mask
255.0.0.0.

Install the provided crossover cable in the host and place the other
end in the Motion Server Block. (The label on side of the MSB
indicates "Profibus" but it is the ethernet RJ45 connector)

Preparing Visual Basic to use the ActiveX Control
The provided ActiveX control can be placed onto the component bar
for the current project by right clicking on the component tool bar
and select "Components....". From the Components List select
"Browse" and choose the file MSBControl.OCX found on the CD-
Rom in the ActiveX Directory

7-2

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

Checking the Ethernet Setup
To confirm the setup is working properly run the
EthernetCheck.exe program on the CD-Rom in the ActiveX direc-
tory and press the "Check" button. If all is well a message box should
appear indicating that the communication test passed.

Returning to Ethernet Use After Using SAW
Servo Application Workbench is available for system setup and
checkout by following instructions in the Servo Application Work-
bench manual. Using SAW turns off any programs running in Mo-
tion Server Block and replaces them with new programs that might
be used for system checkout and diagnostics. When returning to
ethernet use, power cycle the Motion Server Block. This will cause
the on-board ethernet communication application to restart as the
default application.

Simple Motion
The first application illustrates the minimum number of commands
to perform motion. Create a standard application, place the
MSBControl into the application and give it the name "Msb". In the
Form Load procedure place the following code

Msb.Init

Create a button and place in the button the following commands:

Msb.SetMotor 1, true
Msb.SetSpeed 1, 1000
Msb.SetAccel 1, 10000
Msb.SetDecel 1, 10000
Msb.BeginMoveBy 1, 1000
Msb.PerformBuffer
While Msb.Busy
 DoEvents
WEnd

7-3

7Visual Basic ActiveX Examples

Monitoring Controller Status
You can monitor the position of a motor by using the following
command in a timer routine.

Status.Caption=Msb.ActualPosition 1

The MsbControl is not able to handle commands from more than
one activity at once. During the section of code in a timer routine
that uses the MsbControl you must insure that commands are not
being sent to the control elsewhere. This is most easily handled by
having a "mutual exclusion" flag that you use. Before a section of
code where commands will be sent, wait for the flag to become false
and then set the flag true. When leaving that code section, set the flag
false. If all control users check the flag and wait for it to become
available then we insure that only one activity is accessing the Msb
control at a a time.

Coordinated XY Motion

To perform XY coordination we must first describe a coordinated
group. This is done with the T2AxisInit command. T2AxisInit
returns a "handle" that we can use to reference a particular
coordinated group in the controller. In the Form Load we would
now have the following command:

Msb.Init
Msb.ResetAllocation
XYTable=Msb.T2AxisInit 1,2

Where XYTable is an integer that was defined earlier in the project.
ResetAllocation is used to make sure that a full set of resources if
available in the controller for allocation in future Init requests.
XYTable now has a "handle" that will be used to represent the group
in future commands.

In a button procedure type in the following commands

Msb.SetMotor XYTable, true
Msb.SetSpeed XYTable, 1000
Msb.SetAccel XYTable, 10000
Msb.SetDecel XYTable, 10000
Msb.BeginMoveBy XYTabe, 1000, 2000
Msb.PerformBuffer
While Msb.Busy
 DoEvents
WEnd

7-4

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

Circular Interpolation

Another command must be applied to our XYTable group to support
vector and arc path descriptions. This command is "LinkToBuffer"

Msb.Init
Msb.ResetAllocation
XYTable=Msb.T2AxisInit 1,2
Msb.LinkToBuffer XYTable

Now we can describe a race-track style oval pattern using append
commands and then perform the motion.

In a button procedure type in the following commands

Msb.SetMotor XYTable, true
Msb.SetSpeed XYTable, 1000
Msb.SetAccel XYTable, 10000
Msb.SetDecel XYTable, 10000
Msb.T2AxisAppendMoveBy XYTable, 0, 1000
Msb.T2AxisAppendArc XYTable, 1000, 0, 180
Msb.T2AxisAppendMoveBy XYTable, 0, -1000
Msb.T2AxisAppendArc XYTable, 1000, 180, 180
Msb.PerformBuffer
While Msb.Busy
 DoEvents
if Msb.ErrorCode <> 0 then
 MsbBox "Problem with Curved Motion"
WEnd

8-85

8
Pas-
cal
Lan-
guage
Sys-
tem

Chapter

8) MSB Connections

Description
Cabling to Motion Server Block is performed through detachable
screw terminals, ribbon cable, Mini-din, and Subminiature D cables.

Connector Layout

Most signals attach to screw terminal connectors on the front edge of
Motion Server Block. The terminals are two-level. The left column
describes signals on the upper level, the right column signals on the
lower level. Parenthesis are for comment only and do not occupy
connecton locations:

Label Description Label Description

(Servo 1) (Servo 2)
Enc A+ Encoder 1 A + Enc A+ Encoder 2 A+
Enc A- Encoder 1 A- Enc A- Encoder 2 A-
Enc B+ Encoder 1 B+ Enc B+ Encoder 2 B+
Enc B- Encoder 1 B- Enc B- Encoder 2 B-
Enc I+ Encoder 1 I+ Enc I+ Encoder 2 I+
Enc I- Encoder 1 I- Enc I- Encoder 2 I-
+5V +5 Volts +5V +5 Volts
Gnd Ground Gnd Ground
Ena+ Enable 1 Plus Ena+ Enable 2 Plus
Ena- Enable 1 Minus Ena- Enable 2 Minus
Cmd+ Command 1+ Cmd+ Command 2+
Cmd- Command 1 - Cmd- Command 2 -

8-86

Instruction Manual for Motion Server Block

(Servo 3) (Servo 4)
Enc A+ Encoder 3 A + Enc A+ Encoder 4 A+
Enc A- Encoder 3 A- Enc A- Encoder 4 A-
Enc B+ Encoder 3 B+ Enc B+ Encoder 4 B+
Enc B- Encoder 3 B- Enc B- Encoder 4 B-
Enc I+ Encoder 3 I+ Enc I+ Encoder 4 I+
Enc I- Encoder 3 I- Enc I- Encoder 4 I-
+5V +5 Volts +5 +5 Volts
Gnd Ground Gnd Ground
Ena+ Enable 3 Plus Ena+ Enable 4 Plus
Ena- Enable 3 Minus Ena- Enable 4 Minus
Cmd+ Command 3+ Cmd+ Command 4+
Cmd- Command 3 - Cmd- Command 4 -

(Step 5) (Step 6)
Step+ Step 5 Plus Step+ Step 6 Plus
Step- Step 5 Minus Step- Step 6 Minus
Dir+ Direction 5 + Dir+ Direction 6 +
Dir- Direction 5 - Dir- Direction 6 -
Ena Amp Enable 5 Ena Amp Enable 6

(Step 7) (Step 8)
Step+ Step 7 Plus Step+ Step 8 Plus
Step- Step 7 Minus Step- Step 8 Minus
Dir+ Direction 7 + Dir+ Direction 8 +
Dir- Direction 7 - Dir- Direction 8 -
Ena Amp Enable 7 Ena Amp Enable 8
+5V +5 Volts +5V +5 Volts
Gnd Logic Ground Gnd Logic Ground

8-87

8Cables and Connectors

(Power/Outputs/Inputs)
Output 1 Isolated Output 1 Input 1 Isolated Input 1
Output 2 Isolated Output 2 Input 2 Isolated Input 2
Output 3 Isolated Output 3 Input 3 Isolated Input 3
Output 4 Isolated Output 4 Input 4 Isolated Input 4
Output 5 Isolated Output 5 Input 5 Isolated Input 5
Output 6 Isolated Output 6 Input 6 Isolated Input 6
Output 7 Isolated Output 7 Input 7 Isolated Input 7
Output 8 Isolated Output 8 Input 8 Isolated Input 8
Input 17 Isolated Input 17 Input 9 Isolated Input 9
Input 18 Isolated Input 18 Input 10 Isolated Input 10
EStop Emergency Stop Input 11 Isolated Input 11
In Common Input Common Input 12 Isolated Input 12
Output Pwr Output Power + Input 13 Isolated Input 13
Output Rtn Output Return Input 14 Isolated Input 14
Logic Pwr Logic Power + Input 15 Isolated Input 15
Logic Rtn Logic Ground Input 16 Isolated Input 16

Power and Isolated I/O Connector

There (2) 16 point detachable plugs for power and isolated IO.
Motion Server Block permits having 3 isolated power systems:
Controller Logic Power, Isolated Outputs, and Isolated Inputs. In
some systems a single supply might be used for two or more of these
separated systems compromising isolation for the economy of a
reduced number of supplies.

Controller logic power is required at the points labeled "Logic Pwr"
and "Logic Rtn". It is extremely important that power is not reversed
on MSB. Reversed power may cause unrepairable damage to the
controller. A diode has been incorporated into the power system
which will attempt to short the incoming power if it is reversed. If
the power supply fuse trips, double check for the possibility of
reversed power. Power must be in the range 7 volts to 35 volts DC,
17 watts. Current required can be found by dividing the required
wattage, 17, by the voltage. For example, at 24 volts, approximately
700 ma is required to run the controller.

8-88

Instruction Manual for Motion Server Block

Isolated outputs are available to provide 1 amp of current to loads.
The outputs are "sourcing" style outputs. Both positive and return
connections must be made to MSB for output power. This power
should be connected to points "Out Pwr" and "Out Rtn". It is ex-
tremely important that output power is not reversed on MSB. Re-
versed power may cause unrepairable damage to the controller. The
outputs are designed to handle DC loads only. For AC loads, use an
opto-22 style block through the TTL IO system.

Isolated inputs are available which can be either sourcing or sinking.
The sourcing or sinking style must be consistent across all of the
inputs. The connection point "In Com" is used in conjunction with
isolated inputs. If sinking style inputs are chosen, the "+" supply
should connect to "In Com". If sourcing style inputs are to be used,
then "In Com" should be connector to the return for the isolated
input power supply.

The Estop is handled like an input. The EStop signal must be con-
ducting current, i.e. must be "on" for the system to be enabled.
Disconnecting EStop produces the emegeancy shutdown event.

Servo Axis Connectors

Servo signals are presented on a 12 point detachable screw terminal
plug, one axis per plug. These connectors are the right-most connec-
tors when looking at MSB and are labeled Servo 1, Servo 2, Servo 3,
and Servo 4.

Encoder Signals go to a differential receiver as shown below.

8-89

8Cables and Connectors

There is a voltage reference provided for the "-" side of the receiver
in case only a single-ended encoder is provided. If using single ended
encoders, leave the "-" disconnected so that the internal reference
provides a threshold voltage suitable for the "+" voltage. Differential
signals are recommended for improved noise immunity. Encoder
signals go to "Enc A+", "Enc A-", "Enc B+", "Enc B-", "Enc I+" and
"Enc I-". "+5V" and "Gnd" points are available to apply power to the
encoder. The +5 volts is derived from the controller power.

Each servo axis has an optically isolated enable signal as shown in the
following figure:

Both the positive and negative sides of the photo transistor are
brought to the terminals. This permits using the enable signal in a
sourcing or sinking manner. A drive requiring a sourcing enable
signal could be hooked up in the following manner:

The "Ena +" signal goes to the supply voltage from the drive, and the
"Ena -" signal goes to the enable signal of the drive. Current will flow
when the controller indicates "enabled" for the drive.

8-90

Instruction Manual for Motion Server Block

A sinking enable input can be handled with the following hook-up:

In this arrangement, the ground from the drive is brought to the
"Ena -" signal, and the "Ena +" signal goes to the drive enable signal.

Stepper Axis Connectors

Stepper signals are presented on a 12 point detachable screw terminal
plug, two axes per block. These plugs are in the middle of the con-
nector group. Step and Direction signals are brought out on differ-
ential drivers. This supports greater noise immunity and frequency
for drives which have differential receivers. Drives with optical
isolators can also be supported which take a 5 volt signal. For drives
with a common cathode (common minus), connect the "+" of the
step and direction signals to the drive, and the common cathode to
the "Gnd" signal. For drives with a common anode (common plus),
connect the "-" step and direction signals to the drive and the com-
mon anode to "+5V". If the drive provides both plus and minus
signals to the optoisolators, connect directly to the "+" and "-" signals
from the drive.

TTL I/O Connector

The TTL IO connector is identical to the IO connector on Motion
Server.

8-91

8Cables and Connectors

MSB V6 Connector

Connections to the additional servo axes available on MSBs having a
V6 in the part number are made through the 25 pin female connec-
tor on the right side of the unit. The signals are electrically
equivelent to the other servo axes. The axes are designated as 9 and
10.

Axis 9 Encoder A+

Axis 9 Encoder A-

Axis 9 Encoder B+

Axis 9 Encoder B-

Axis 9 Encoder I+

Axis 9 Encoder I-

+5 Volts

Ground

Axis 9 Enable+

Axis 9 Enable-

Axis 9 Command+

Axis 9 Command-

Ground

Axis 10 Encoder A+

Axis 10 Encoder A-

Axis 10 Encoder B+

Axis 10 Encoder B-

Axis 10 Encoder I+

Axis 10 Encoder I-

+5 Volts

Ground

Axis 10 Enable+

Axis 10 Enable-

Axis 10 Command+

Axis 10 Command-

MSB V6 Female Connector Definition

When running with a V6 option card the servo encoder counts rates
are as follows:

Axis 1 4 Mhz

Axis 2 4 Mhz
Axis 3 2 Mhz

Axis 4 2 Mhz
Axis 5 2 Mhz

Axis 6 2 Mhz

8-92

Instruction Manual for Motion Server Block

Current Release Limitations

The initial release of motion server block does not have the follow-
ing features which are intended to be incorporated into the product
in future revisions:

- No high-speed position compare capability available

- No input capture for servos or steppers (index capture is available)

- "Cmd-" signal is common to GND. Isolated command signals are
designed in the product but waiting for parts due 4th quarter
2000.

9-1

9
Pas-
cal
Lan-
guage
Sys-
tem

Chapter

9) DMS Connections

Description
Cabling to Motion Server is performed through flat ribbon cables
terminated with IDC connectors.

Axis Group Connectors

There are (4) 60 pin connectors for axis information called "Axis
Group" connectors. Each 60 pin ribbon cable supports (4) axis of
signals. The 60 pin ribbon cable can be split apart into (4) identical
15 pin axis sub-cables. The signals have been chosen in a very regular
pattern so that all of the 15 pin sub-cables are identical in layout.

I/O Connector

There is (1) 50 pin connector containing 48 bits of configurable I/O.
Signals are configured as input or output in 4 bit groups.

EStop Connector

There is (1) 4 pin header used to configure E-Stop with a jumper or
to cable to EStop. The jumper can be used to disable E-Stop, connect
I/O signal 1 to be E-Stop, or can serve as a cable connector for an
external E-Stop cable assembly.

External Bus Connector

There is (1) 26 pin connector which supports an external 8 bit bus
allowing Motion Server to control additional hardware elements.

9-2

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

Axis Group Connector Definitions
The following Table defines the connectors for the axis groups. These connectors are designated "Axis 1-4",
"Axis 5-8", "Axis 9-12", and "Axis 13-16" on the printed circuit board silk screen. The signal definitions is a
regular pattern both along the connector, and from one connector to the next. For example, Pin 3 is always
an Encoder B+ signal with the axis defined by which connector the pin is on. Each pin in any particular
connector has 3 other counterparts spaced a multiple of 15 away. For example, pin 18 (pin 3 + 15) is also
an Encoder B+ signal as well as pin 33 (pin 3 +30) and pin 48 (pin 3 + 45)

Pin Number Description Axis 1-4 Axis 5-8 Axis 9-12 Axis 13-16

1 Encoder A+ Axis 1 Axis 5 Axis 9 Axis 13
2 Encoder A- Axis 1 Axis 5 Axis 9 Axis 13
3 Encoder B+ Axis 1 Axis 5 Axis 9 Axis 13
4 Encoder B- Axis 1 Axis 5 Axis 9 Axis 13
5 Encoder I+ Axis 1 Axis 5 Axis 9 Axis 13
6 Encoder I- Axis 1 Axis 5 Axis 9 Axis 13
7 Amp Enable High Axis 1 Axis 5 Axis 9 Axis 13
8 Amp Enable Low Axis 1 Axis 5 Axis 9 Axis 13
9 Position Capture Axis 1 Axis 5 Axis 9 Axis 13

10 Position Compare Axis 1 Axis 5 Axis 9 Axis 13
11 Motor Command Axis 1 Axis 5 Axis 9 Axis 13
12 Step Pulse Axis 1 Axis 5 Axis 9 Axis 13
13 Direction Axis 1 Axis 5 Axis 9 Axis 13
14 +5 Volts Axis 1 Axis 5 Axis 9 Axis 13
15 Ground Axis 1 Axis 5 Axis 9 Axis 13

16 Encoder A+ Axis 2 Axis 6 Axis 10 Axis 14
17 Encoder A- Axis 2 Axis 6 Axis 10 Axis 14
18 Encoder B+ Axis 2 Axis 6 Axis 10 Axis 14
19 Encoder B- Axis 2 Axis 6 Axis 10 Axis 14
20 Encoder I+ Axis 2 Axis 6 Axis 10 Axis 14
21 Encoder I- Axis 2 Axis 6 Axis 10 Axis 14
22 Amp Enable High Axis 2 Axis 6 Axis 10 Axis 14
23 Amp Enable Low Axis 2 Axis 6 Axis 10 Axis 14
24 Position Capture Axis 2 Axis 6 Axis 10 Axis 14
25 Position Compare Axis 2 Axis 6 Axis 10 Axis 14
26 Motor Command Axis 2 Axis 6 Axis 10 Axis 14
27 Step Pulse Axis 2 Axis 6 Axis 10 Axis 14
28 Direction Axis 2 Axis 6 Axis 10 Axis 14
29 +5 Volts Axis 2 Axis 6 Axis 10 Axis 14
30 Ground Axis 2 Axis 6 Axis 10 Axis 14

9-3

9DMS Connections

Pin Number Description Axis 1-4 Axis 5-8 Axis 9-12 Axis 13-16

31 Encoder A+ Axis 3 Axis 7 Axis 11 Axis 15
32 Encoder A- Axis 3 Axis 7 Axis 1 Axis 15
33 Encoder B+ Axis 3 Axis 7 Axis 11 Axis 15
34 Encoder B- Axis 3 Axis 7 Axis 11 Axis 15
35 Encoder I+ Axis 3 Axis 7 Axis 11 Axis 15
36 Encoder I- Axis 3 Axis 7 Axis 11 Axis 15
37 Amp Enable High Axis 3 Axis 7 Axis 11 Axis 15
38 Amp Enable Low Axis 3 Axis 7 Axis 11 Axis 15
39 Position Capture Axis 3 Axis 7 Axis 11 Axis 15
40 Position Compare Axis 3 Axis 7 Axis 11 Axis 15
41 Motor Command Axis 3 Axis 7 Axis 11 Axis 15
42 Step Pulse Axis 3 Axis 7 Axis 11 Axis 15
43 Direction Axis 3 Axis 7 Axis 11 Axis 15
44 +5 Volts Axis 3 Axis 7 Axis 11 Axis 15
45 Ground Axis 3 Axis 7 Axis 11 Axis 15

46 Encoder A+ Axis 4 Axis 8 Axis 12 Axis 16
47 Encoder A- Axis 4 Axis 8 Axis 12 Axis 16
48 Encoder B+ Axis 4 Axis 8 Axis 12 Axis 16
49 Encoder B- Axis 4 Axis 8 Axis 12 Axis 16
50 Encoder I+ Axis 4 Axis 8 Axis 12 Axis 16
51 Encoder I- Axis 4 Axis 8 Axis 12 Axis 16
52 Amp Enable High Axis 4 Axis 8 Axis 12 Axis 16
53 Amp Enable Low Axis 4 Axis 8 Axis 12 Axis 16
54 Position Capture Axis 4 Axis 8 Axis 12 Axis 16
55 Position Compare Axis 4 Axis 8 Axis 12 Axis 16
56 Motor Command Axis 4 Axis 8 Axis 12 Axis 16
57 Step Pulse Axis 4 Axis 8 Axis 12 Axis 16
58 Direction Axis 4 Axis 8 Axis 12 Axis 16
59 +5 Volts Axis 4 Axis 8 Axis 12 Axis 16
60 Ground Axis 4 Axis 8 Axis 12 Axis 16

9-4

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

I/O Connector Definition
The 50 pin connector provides inputs and outputs. The pin number is the I/O number with the exception
of 49 (+5) and 50 (ground). Input or output sense is configured in 4 bit groups. The groups are defined by
"splitting" the connector into (2) 1x50 strips, and then slicing those strips into (12) groups of (4) bits each.
This partitioning was chosen so that the even-pin strip could be configured as inputs allowing a standard
OPTO-22 cable to plug into the connector without contention between the cable grounds (located on all
the even pins) and signals normally available on those pins.

Description Pin Pin Description

Group 1 I/O 1 1 2 I/O 2 Group 2
Group 1 I/O 3 3 4 I/O 4 Group 2
Group 1 I/O 5 5 6 I/O 6 Group 2
Group 1 I/O 7 7 8 I/O 8 Group 2

Group 3 I/O 9 9 10 I/O 10 Group 4
Group 3 I/O 11 11 12 I/O 12 Group 4
Group 3 I/O 13 13 14 I/O 14 Group 4
Group 3 I/O 15 15 16 I/O 16 Group 4

Group 5 I/O 17 17 18 I/O 18 Group 6
Group 5 I/O 19 19 20 I/O 20 Group 6
Group 5 I/O 21 21 22 I/O 22 Group 6
Group 5 I/O 23 23 24 I/O 24 Group 6

Group 7 I/O 25 25 26 I/O 26 Group 8
Group 7 I/O 27 27 28 I/O 28 Group 8
Group 7 I/O 29 29 30 I/O 30 Group 8
Group 7 I/O 31 31 32 I/O 32 Group 8

Group 9 I/O 33 33 34 I/O 34 Group 10
Group 9 I/O 35 35 36 I/O 36 Group 10
Group 9 I/O 37 37 38 I/O 38 Group 10
Group 9 I/O 39 39 40 I/O 40 Group 10

Group 11 I/O 41 41 42 I/O 42 Group 12
Group 11 I/O 43 42 44 I/O 44 Group 12
Group 11 I/O 45 45 46 I/O 46 Group 12
Group 11 I/O 47 47 48 I/O 48 Group 12

+5 Volts 49 50 Ground

9-5

9DMS Connections

EStop Connector Definition
The EStop connector has 4 "pins" defined as follows

pin 1 Trimmed off for key
pin 2 Ground
pin 3 E-Stop input
pin 4 I/O 1 from 50 pin connector

Placing a jumper between pins 2 and 3 enables the E-Stop (which must be maintained at ground against its
4.7k pullup). This is not recommended if doing anything besides bench testing free spinning motors.

Placing the jumper between pins 3 and 4 redirects the EStop to be from the general I/O connector where
an OPTO-22 module rack may be hooked in, or some other IO interconnect that has been chosen for
general purpose I/O

A third option is to put a 4 x 1 plug into this header with a cable for pins 2 and 3. A normally closed switch
would serve as an E-Stop switch. If the switch disconnected, or the cable was missing, the controller will
not enable power to the amplifiers.

9-6

Instruction Manual for Motion Server Controllers and Binary Command Interpreter

External Bus Connector
The remaining 26 pin connector provides a simplified 8-bit bus that can be used to connect to additional
hardware. Note that Douloi provides a PC/104 "bridge" accessory that is driven by this connector. The PC/
104 format allows the use of many third part cards

Power signals from this connector should only be for signal-level power. If you need any significant
current, use a disk-drive connector. Additional details about the use of this bus are available from Douloi
Automation on request.

Pin Description

1 Data 0
2 Data 1
3 Data 2
4 Data 3
5 Data 4
6 Data 5
7 Data 6
8 Data 7
9 Addr 0
10 Addr 1
11 Addr 2
12 Addr 3
13 Addr 4
14 Addr 5
15 Addr 6
16 Select
17 Write/Read
18 Comm_Capture_1
19 Comm_Capture_2
20 Comm_Capture_3
21 Comm_Capture_4
22 Reset
23 +12 Volts
24 -12 Volts
25 +5 Volts
26 Ground

10-1

10Configuring Motion Server for Binary Commands

10) Configuring Motion Server
for Binary Commands

Overview
Motion Server contains on-board a 486 processor and real-time operating
system that can perform application programs independently from the host
computer. Programs which run on Motion Server are 32 bit, compiled
programs which execute very quickly. Because high speed application
programs are available, many motion controller functions normally imple-
mented in "EProm" firmware on other controller products are imple-
mented in Motion Server as application programs. This provides the most
flexibility and insures that development work will never "hit the wall"
because of a controller limitation.

The Binary Command Interpreter is a "stock" application provided by
Douloi Automation which works in conjunction with the
DMS_BC32.DLL. The binary command interpreter runs on Motion
Server and responds to communication packets coming from the host as
constructed by the DMS_BC32 library. As far as Motion Server is con-
cerned, interpreting binary commands is just one of many possible applica-
tions that might be provided for Motion Server to run.

The following instructions explain how to configure Motion Server to
contain the binary commands program on-board, and how to have Motion
Server "autostart" the application as it's default application.

Configuration
Configuration is performed with Servo Application Workbench (SAW).
Follow the setup instructions to install SAW if it has not been installed
already. Also install the Binary Command Interpreter (BCI) disk.

10-2

Instruction Manual for Motion Server and Binary Command Interpreter

Start SAW. You should see the default "blank page" as shown in the follow-
ing figure:

Use the "File|Open" menu selection and go to the Binary Command
installation directory. The default value for this directory is
c:\Douloi\dms_bc32.

From this directory select the BIN_CMND application:

10-3

10Configuring Motion Server for Binary Commands

You should see an application similar to the following:

From the SAW main menu select "Run|Start App". A message box should
appear indicating that the application is compiling. When the application is
finished, it will start and show a display similar to the following:

Push the "Save" button showing in the Binary Commands window. A
series of messages will be shown indicating download progress. When
programming is complete, a "done" message will be shown in the display.
The Binary Commands dialog is the "console" for the on-board software
application and represents the application. If the Binary Commands dialog
is explicitly closed (by clicking on the system menu and closing) the on-
board software closes also and the command intepreter stops running. To
keep the software operating and still close the SAW software, leave the
Binary Commands dialog alone and close the SAW development software
instead. This closes the development environment and also removes the
Binary Commands dialog (because that dialog is hosted by the SAW
environment) but leaves the on-board software running.

10-4

Instruction Manual for Motion Server and Binary Command Interpreter

Turn Switch 3 on Motion Server to the "on" position. Switch 3 means
"autostart the application resident in memory". This will cause the inter-
preter to automatically start when the computer is turned on again in the
future.

The autostart switch only has influence when the Motion Server resets.
Note that control-alt-delete software resets do not reset the Motion Server
card.

If during start-up the green "heartbeat" light stops blinking for a prolonged
period (i.e. greater than 10 seconds) set Switch 3 to "off" and cycle power
again. If the blinking does not stop then there is a problem with the
autostart program. Please consult Douloi Automation if this occurs.

Starting SAW ends the currently running autostart program. To resume
the autostart program after having used SAW, cycle power, perform a
hardware reset of the host to reset the Motion Server card, or load SAW to
run the Binary Command program and exit by closing the SAW
develoment environment (leaving the Binary Command dialog alone).

10-5

10Configuring Motion Server for Binary Commands

10-6

Instruction Manual for Motion Server and Binary Command Interpreter

	Table of Contents
	1) Introduction
	Welcome!
	Objective of Document
	Motion Server Specs (DMS in PC)
	Motion System
	Servo Specifications
	Servo Capabilities
	Stepper Capabilities

	Motion Server Block Specs (Standalone)
	Motion System
	Servo Specifications
	Servo Capabilities
	Stepper Capabilities

	Common Specs (DMS and MSB)
	Timer Event
	Multiple Motion Application Threads
	Microsoft Windows
	Servo Application Workbench
	Binary Command Interpreter
	Description
	Methods of Use

	2) Binary Communication Protocol
	Purpose
	Board Addressing
	Communication Model
	Register Map
	Register Descriptions
	Channel Request (read)
	Channel Control (write)
	Channel Status (read)
	Channel Control (write)

	Fifo Hardware Abstraction
	AllocateChannel
	FifoReset
	FifoWriteWord
	FifoWriteInteger
	FifoWriteBoolean
	FifoWriteLongint
	FifoWriteSingle
	FifoSendMessageAndWaitForResponse;
	FifoReadWord
	FifoReadInteger
	FifoReadBoolean
	FifoReadLongint

	General Command Abstraction
	Transmit Structure
	Response Structure
	dms_Procedure
	dms_BooleanFunction
	dms_AxisProcedure
	dms_AxisProcedureIntegerParam
	dms_AxisProcedureLongintParam
	dms_AxisProcedureBooleanParam
	dms_AxisIntegerFunction
	dms_AxisLongintFunction
	dms_AxisBooleanFunction
	dms_T2AxisVectorProcedure
	dms_T3AxisVectorProcedure
	dms_T4AxisVectorProcedure
	dms_T5AxisVectorProcedure
	dms_T6AxisVectorProcedure

	3) Command Reference
	ABit
	Abort
	Accel
	ActualPosition
	ArmCompare
	ArmIndexCapture
	ArmInputCapture
	BBit
	BeginMoveAlongCurve
	BeginUserTask
	BeginStop
	CaptureBit
	Busy
	CaptureHasTripped
	CapturePosition
	Clear
	CommandedPosition
	CommandedTorque
	ConfigureIOBitAsOutput
	Decel
	DestinationPosition
	EnableIsOn
	ErrorCode
	ErrorLimit
	ErrorPosition
	Gain
	IBit
	Init (AcitveX only)
	InputBit
	Integrator
	Jog
	LinkToBuffer
	MotorIsOn
	MoveAlongCurve
	MoveIsFinished
	NegativeLimit
	PerformBuffer (ActiveX only)
	PositiveLimit
	ProfileVelocity
	ResetAllocation
	ResetWatchdog
	SampleRate
	SetAccel
	SetActualPosition
	SetBuffer (ActiveX only)
	SetCaptureTrip
	SetCommandedPosition
	SetCommandedTorque
	SetCompareBit
	SetCoordinateInversion
	SetDac
	SetDecel
	SetEnable
	SetErrorLimit
	SetGain
	SetIntegrator
	SetLoopInversion
	SetMotor
	SetMotorType (DMS only)
	SetNegativeLimit
	SetOutputBit
	SetOutputEnable (DMS Only)
	SetPositiveLimit
	SetSampleRate
	SetSpeed
	SetUserBoolean
	SetUserLongint
	SetUserSingle
	SetZero
	Speed
	Stop/StopAxis
	T2AxisAppendArc
	T3AxisAppendArc
	TNAxisAppendMoveBy
	TNAxisAppendMoveTo
	TNAxisBeginMoveBy
	dms_TNAxisBeginMoveTo
	TNAxisDispose
	TNAxisInit
	TNAxisMoveBy

	4) Visual Basic DLL Examples
	Objective
	Setting Controller Parameters and Performing Motion
	Monitoring Controller Status

	5) C Language DLL Examples
	Objective
	C Example Framework
	Setting Controller Parameters and Performing Motion
	Single Axis Motion Pattern
	Coordinated Motion
	Curved Motion

	6) Pascal DLL Examples
	Objective
	Setting Controller Parameters and Performing Motion
	Single Axis Motion Pattern
	Coordinated Motion

	7) Visual Basic ActiveX Examples
	Objective
	Preparing the Host for Ethernet Communication
	Preparing Visual Basic to use the ActiveX Control
	Checking the Ethernet Setup
	Returning to Ethernet Use After Using SAW
	Simple Motion
	Monitoring Controller Status
	Coordinated XY Motion
	Circular Interpolation

	8) MSB Connections
	Description
	Connector Layout
	Power and Isolated I/O Connector
	Servo Axis Connectors
	Stepper Axis Connectors
	TTL I/O Connector
	MSB V6 Connector
	Current Release Limitations

	9) DMS Connections
	Description
	Axis Group Connectors
	I/O Connector
	EStop Connector
	External Bus Connector
	Axis Group Connector Definitions
	I/O Connector Definition
	EStop Connector Definition
	External Bus Connector

	10) Configuring Motion Server for Binary Commands
	Overview
	Configuration

