
Motion Controller Resident Collision Avoidance

Abstract

Automated machines are being given greater respon-

sibilities. Particularly in the semiconductor industry, a single

work-in-process wafer may be more valuable than the ma-

chine handling it. A machine work area can be crowded with

delicate and expensive tooling including microscope optics

and fixtures. A single positioning mistake, such as an improp-

erly trained point or incorrectly calculated destination, can

produce a machine collision.

A collision damages expensive tooling and mechan-

ics, wastes work in process, stops system development or

production, and contaminates a clean environment. Measures

must be taken to avert these outcomes. Regardless of the

commands sent to the motion controller, the machine should

never collide with tooling, fixtures, or mechanical limits.

Once a topic of abstract research, advances in motion

control technology enable real-time collision avoidance to be

resident on-board the motion control card itself. One or more

geometric models describe safe movement areas. These mod-

els are used by a real-time monitor which anticipates colli-

sions based on current machine position and velocity. The

machine is stopped before a detected collision can occur. An

example taken from industry will show the method of imple-

menting on-board collision avoidance.

Collision Cost

Semiconductor wafers have grown in size from small

disks up to the 300 mm standard being pursued today, about

the size of a small pizza. An unprocessed 300 mm wafer costs

about $1500 although some of this expense may be related to

the still relatively small volume compared to 200 mm wafers.

Upon completion, the same wafer may have a value of

$90,000. A single wafer can easily cost more than the

semiconductor processing tool currently holding and moving

it. The cost of a collision that damages the wafer has dramati-

cally increased.

New generations of semiconductor processing equip-

ment are being developed at a rapid pace. During develop-

ment software is being run for the first time and may well be

generating incorrect move destinations. If this machine under

development collided with a fixture several types of expenses

occur. Mechanical parts will need to be rebuilt, replaced, and

recalibrated. As well, the software testing effort may come to

a halt while the mechanism is being restored. The system

integration schedule slips because there is often just one

prototype machine to work with.

At run-time the costs are even greater. A collision

damages work in process, generates particle contamination in

a clean environment, and potentially stops a production line

at great expense.

Collision Causes

Why would a collision occur in the first place? Some

collisions are caused by runaway conditions and other types

of uncontrolled motor movement. The collisions being con-

sidered in this paper are produced when the controller is

deliberately told to perform a move to an inappropriate

destination. Destinations are often data driven. Position

information can be calculated from CAD information, assem-

bly and part models, or taught locations.

J. Randolph Andrews
Douloi Automation, Inc.

740 Camden Avenue Suite B
Campbell, CA 95008-4102

(408) 374-6322

Paper Presented at the
1998 Incremental Motion

Control Systems and
Devices Symposium

Copyright © 1998 Douloi Automation

Ideally, the motion controller is safeguarded from bad

destinations by error checking being performed in the host

software. However, the host software is not necessarily fin-

ished or proven. The collision avoidance is needed before the

host software is done because software development and

debugging is a high-risk period for the machine.

There are also cases where the motion directives are

not coming from the host, but coming from a joystick or

sensor. Collision avoidance needs to be active in these cases

also.

Behavioral Objective

The goal is to have a motion control system which is

simply unwilling to do something that would damage the

machine. This objective is not to be confused with “obstacle

avoidance”. As defined in this paper, obstacle avoidance

includes the idea of motion path adjustment so as to maneuver

around obstacles in the machine workspace. The behavior of

a machine implementing obstacle avoidance in response to a

foreseen collision is to change course and navigate around the

obstacle. The behavior of a machine implementing collision

avoidance is to simply come to a stop. There is no recovery

plan for a collision situation. The machine has a structured

environment. No legitimate command from good data would

direct the machine into a collision situation. If a collision

problem is detected then apparently something has gone very

wrong. In this mind set, continuing is not a good idea.

Operator or developer intervention is required.

One might make the critical point that adding colli-

sion avoidance will create unnecessary complexity and de-

grade system reliability because of that complexity. It is true

that unnecessary complexity is part of the problem in deploy-

ing automation, not part of the solution. This appears to be a

legitimate criticism. However the collision avoidance is iso-

lated from the design of the host software being resident on-

board the controller. It must be isolated, because part of its job

is to safeguard against mistakes in the host software. The

presence of collision avoidance on-board the motion control-

ler has almost no impact on the host software with the

exception of additional status indicating that a move stopped

prematurely to avoid a collision. There is no increase in host

software complexity.

Example Mechanism

An example mechanism that will be considered in the

course of this paper is shown below.

Figure 1. Example Mechanism

Figure 1 shows an example of a mechanism with a

gripper operating in a workspace. A number of collision

features are in the workspace including two support fixtures

on the left that the gripper reaches between and a support

fixture on the right of the machine. These support fixtures are

required to support the film on which the wafer is mounted.

This particular mechanism contains a primary X and Y stage

along with a loader attached to the X stage which also moves

in the X direction. In Figure 1, the loader is to the extreme left

in its travel on top of X axis. The gripper is located on the end

of the loader. Material is retrieved and deposited in a maga-

zine on the left side of the machine. The wafer passes over the

support fixtures, however the gripper and sections of the X axis

slide can collide into them.

Figure 3. Software Positive and Negative Limits

Proactive collision avoidance becomes more compli-

cated when there are machine features in the work area. A

destination may be in a safe zone, but the path may go through

a feature. This case is shown in Figure 4. A proactive

approach needs to check for intersections between the moving

members and the machine fixtures.

Figure 4. Safe Destination with Collision Midway

An additional consideration is that a proactive ap-

proach presumes that the controller has a specific start

location and destination location for the next move. The path

planner would be the most appropriate place to locate a

proactive collision evaluator. It’s possible to run the control-

ler with a joystick, or electronic-gearing hand wheels. In this

Figure 2 shows the mechanism in the processing posi-

tion having retrieved a wafer. The loader has moved to the right

by the length of the X axis member. The X axis has moved

slightly to the right and the Y axis has moved up.

Figure 2. Mechanism in Normal Run Position

X and Y movement of the primary stage positions the

wafer during processing. Moving from the Figure 1 load

position to the Figure 2 run position requires moving in a

deliberate path around the right support fixture. A straight

line path, for example, would cause a collision.

Proactive Collision Avoidance

There are several ways to approach collision avoid-

ance. One approach uses a proactive style. Proactive avoid-

ance considers the consequences of a proposed motion and

rejects the command without even starting the move if the

move would cause a problem.

One common example of proactive collision avoid-

ance is simply the “soft limits” found on many motion

controllers. Software limits are depicted in Figure 3. A

positive limit and negative limit is sent to the controller for a

particular axis. If the axis is asked to move outside these

limits, the command is rejected before any motion occurs. In

this case, the collision avoidance operation is simply a

comparison of the proposed coordinate with the limits to

insure that the destination is safe.

case the motion is “sensor-driven” rather than path-planning

driven. Destinations are calculated every sample period based

on the sensors and do not even go through the path planner in

the motion controller.

There might be a reason to ask for a motion controller

to begin moving to an unsafe destination with the requirement

that the motion is stopped early while the machine is still in

the safe area. Some joystick methods use this approach. A

proactive approach would reject this technique since it would

be unwilling to start the move initially.

Reactive Collision Avoidance

In contrast to proactive collision avoidance, reactive

collision avoidance is willing to try any move that is asked of

the controller but evaluates whether the move is remaining

safe in an ongoing, real-time manner. If the move is heading

towards an unsafe condition the motion controller stops

motion before the collision occurs.

The reactive approach can be more general than the

proactive approach making real-time decisions on the fly. The

reactive approach is able to handle the problematic cases for

the proactive collision avoidance method. In this paper the

reactive method is used.

The Geometric Model

The first step in avoiding collisions is to have a clear

understanding of where the safe-movement zones are in the

machine. This paper is not considering sensor-based collision

detection. Instead, collision detection will be based on a

geometric model that describes safe areas of movement.

Tomas Lozano-Perez showed that a collision problem

between an object and a work environment can be re-mapped

into a collision problem between a point and an adjusted work

environment. Figure 5 shows the physical arrangement of a

gripper around machine features.

Figure 5. Normal Sized Machine Features

Figure 6 shows how the gripper has been reduced to a

point and the machine features enlarged to represent the same

physical region of movement.

Figure 6 - Adjusted Features with Point Gripper

This re-mapping is convenient because it simplifies

collision detection calculations. The re-mapping needs to be

done just once. Questions can now be asked about the point

being inside or outside a feature, a simpler problem than

asking if different shapes representing the gripper and ma-

chine features overlap. This re-mapping is similar to radial

tool offset compensation however the adjustment in the X

direction is not necessarily the same as the adjustment in the

Y direction. In practice, the model is learned through teach-

ing and the mapping is never explicitly performed.

Polygons can now be used to represent a “safe zone” of

movement. If we describe the polygon with lines aligned with

axes we have an easy job determining if the gripper point is

inside the inflated polygon shape. It is also possible to use

other shapes based on the geometry of the features being

avoided such as circles or arcs. In this paper only polygons

were used with polygon edges aligned to axes of motion.

Beyond collision risk of the gripper there is also the

possibility of colliding other parts of the machine into fixtures

including intermediate stages. There may be several, differ-

ent concurrent models based on how many ways there are for

a collision to occur. In the example mechanism there is one

particular model for collisions between the gripper and

surrounding tooling. There is a second model that is used to

detect collisions between the X stage and the tooling, separate

from considerations of the gripper. The collision outcome of

these different models can be combined to produce a single

answer, collision or no collision.

Model Training

How are geometric models taught? The easiest method

is by explicit training. A training interface, such as shown in

Figure 7, can be used to establish safe-zone edge locations.

Figure 7. Gripper Collision Trainer

This trainer is for the gripper. The stair-step geometry

describes connector and corners in the gripper that must be

avoided although the gripper does move in closely to the left

of the right-most support fixture.

Using a joystick control mode, the machine is manu-

ally moved to various positions representing the boundaries of

the safe-zone polygon. In the interface, these polygons have

buttons on the edges. When the machine has been manually

guided to that edge, the button is pushed to record the machine

coordinate for that polygon feature.

Figure 8 shows the much simpler trainer used to

describe collisions between the X stage and the right most

support fixture. In this case, a motor bracket can collide if the

X stage is in the most positive location. This produces a notch

in the safe area workspace shown in the lower left corner.

Figure 8. Collision Trainer for X Axis

The machine is guided around the limits of the work

area with the edge-buttons being pushed along the way. In this

implementation, the shape of the polygon is "hard-coded"

into the training interface as is the inside-outside algorithm

used to monitor for collisions. A more general solution would

allow the polygon to be described interactively, such as is done

by a CAD system, so as to accommodate changes to the

machine structure without having to change the on-board

software.

After showing each of the polygon edges, the geomet-

ric data can be saved in the host or saved in nonvolatile

memory in the motion controller. If the information is saved

in the host and downloaded into the controller, there must be

some provision for insuring that no unsafe motion occurs

prior to receiving the polygon safe-zone description. One way

to accomplish this is to set all of the polygon coordinates to

0,0. This causes the motion controller to believe that the safe

zone of operation is a mere point. Any motion directive at all

is considered illegal and is rejected prior to receiving the safe-

zone description.

Dynamic Considerations

The first step in performing collision avoidance is

having a geometric safe-zone model. The second step is to use

that model in a dynamic, real-time manner to anticipate that

a collision will occur given the current state of the machine.

When this is found to be the case the motion controller can

avert the collision by stopping motion.

This dynamic consideration can be performed by

using the current machine velocity vector and deceleration

settings to calculate the current distance required to perform

a controlled stop. A “safety margin” is added to this stopping

distance to become the look-ahead distance. The controller

then spatially looks-ahead of the current machine coordinate

in the current-velocity direction. If the look ahead point is

outside the safe-zone then the machine has just enough time,

if it stops immediately, to avoid a collision. The current

motion is aborted and error status is set in the controller

indicating that the move finished early due to a collision

avoidance stop.

This method assumes that the direction of the velocity

vector is constant during the proposed stopping move, i.e.

straight line vector style moves and not circular or curvilinear

moves. For the application being described this was the case.

What should be done in light of such a stop? This

question must be answered at the system design level. It may

be that if all was well this collision avoidance safety net never

should have engaged. If a collision was about to occur then

there must be something fundamentally wrong with the

positioning data or the host control software. On the other

hand, if the collision stop was in response to a joystick

command, the collision stop is simply a “safety bumper”

around the machine feature begin protected. In this case there

is no problem at all with the collision avoidance stop as the

joystick control is operating normally.

It is interesting using joystick control to try to "strike

a glancing blow" with the robot against one of the support

struts. The gripper approaches at high speed, slows and stops

against the invisible safe-zone polygon, but retains some

velocity along the edge of the polygon (if it was a glancing,

rather than direct blow). The gripper follows along the edge

until the end of that polygon edge. At this point the gripper is

free to continue. It immediately accelerates up to speed and

continues as if "falling off the edge" of the polygon.

Implementation

The controller software must answer the question "Is

the following described point in the machine's safe zone or

not?". The pseudo code for this question is:

If coordinate is inside polygon then
Coord would not cause collision

else
Coord would cause collusion

This pseudo-code solution is implemented for the

specific polygons used in the example mechanism with the

following routine:

Function CoordinateWouldCauseCollision(
XPos:longint; YPos:longint;
LoaderPos:longint):boolean;

var XPlusL:longint;

begin
if not CollisionAvoidanceEnabled then

begin
CoordinateWouldCauseCollision:=false;
exit;
end;

CoordinateWouldCauseCollision:=true;
if (XPos > Edge(ul_Y1x))
and (YPos > Edge(ul_Y2y)) then

exit;

XPlusL:=XPos+LoaderPos;

if XPlusL < Edge(ul_G1x) then
begin
CoordinateWouldCauseCollision:=false;
exit;
end;

if (XPlusL < Edge(ul_G7x))
and (YPos > Edge(ul_G2y)) then

exit;
if (XPlusL < Edge(ul_G9x))
and (YPos > Edge(ul_G8y)) then

exit;
if (XPlusL < Edge(ul_G3x))
and (YPos > Edge(ul_G10y)) then

exit;
if (XPlusL > Edge(ul_G5x))
and (YPos > Edge(ul_G6y)) then

exit;
if YPos > Edge(ul_G4y) then

exit;

CoordinateWouldCauseCollision:=false;
end;

This routine takes a proposed coordinate for the X

axis, Y axis, and Loader axis. If collision avoidance is not

enabled, then the routine returns false immediately. This is

needed during safe zone training, for example. In certain

situations the machine needs to be free to move if the collision

data is unknown.

The answer to the question coordinate-would-cause-

collision is set to true as the default answer. The positions

submitted for checking then go through a series of compari-

sons with edges of the safe-zone polygon. The edges are noted

with names such as ul_G7x, an X edge coordinate, or ul_G10y,

a y edge coordinate. The first comparison is based on X and

Y to check for collisions of the X stage against machine

features. The remaining tests use the position XPlusL repre-

senting the sum of the X axis and loader axis which estab-

lishes the position of the gripper. A greater number of position

comparisons are done with the gripper to determine if the

gripper is inside or outside the safe-zone. Checking both the

X axis and the gripper illustrate the use of two separate

geometric models (although the X axis model is just the

polygon notch).

This routine provides an answer to the static question

regarding an X, Y and Loader coordinate. Now the dynamic

question must be asked. The pseudo code for the dynamic

collision avoidance case is expressed as follows:

|Stopping Vector|:= f(velocity)
 +CollisionMargin

angle(Stopping Vector):=angle(velocity)

LookAheadVector:=
CurrentPositionVector+StoppingVector

If LookAheadVector coordinate would cause
collision then

Stop all motion and
Report collision stop

The following code implements the pseudo code for

the dynamic motion connection to the safe-zone polygon:

Procedure WatchForCollision;

var Delta:T3Vector;

begin
CollisionAvoidanceStop:=false;
while (not XAxis.MoveIsFinished)
or (not YAxis.MoveIsFinished)
or (not LoaderAxis.MoveIsFinished) do

begin
yield;

if XAxis.ProfileVelocity > 0 then
Delta.x:=XDecelDistance

+CollisionMargin
else if XAxis.ProfileVelocity < 0
then

Delta.X:=-XDecelDistance
-CollisionMargin

else
Delta.x:=0;

if YAxis.ProfileVelocity > 0 then
Delta.y:=YDecelDistance

+CollisionMargin
else if YAxis.ProfileVelocity < 0
then

Delta.y:=-YDecelDistance
-CollisionMargin

else
Delta.y:=0;

if LoaderAxis.ProfileVelocity > 0
then

Delta.z:=LoaderDecelDistance
+CollisionMargin

else if LoaderAxis.ProfileVelocity <0
then

Delta.z:=-LoaderDecelDistance
-CollisionMargin

else
Delta.z:=0;

if CoordinateWouldCauseCollision(

XAxis.ActualPosition+Delta.x,
YAxis.ActualPosition+Delta.y,
LoaderAxis.ActualPosition+Delta.z)

then
begin
CollisionAvoidanceStop:=true;
XYAxis.BeginStop;
XAxis.BeginStop;
YAxis.BeginStop;
LoaderAxis.Stop;
while not XAxis.MoveIsFinished
and YAxis.MoveIsFinished
and LoaderAxis.MoveIsFinished do

yield;
end;

end;

The name of the procedure is "Watch for Collision".

This procedure is spawned as a separate thread of execution

when a motion is started. As currently implemented it ex-

ecutes as long as there is motion occurring with the X, Y, or

Loader axes. Once all the motion has stopped, the routine

ends as there is nothing left to do. There may be some

circumstances where it would be simplest just to always have

the routine running.

The Delta vector is being used to hold look ahead

information. The decel distances for each of the axes are

found and oriented based on the current velocity of the axis

along with a Collision Margin distance to provide a cushion

around the machine features. The projected machine posi-

tions are calculated to be the current axis positions plus their

corresponding look ahead delta values. If this projected point

is not safe then the machine is stopped and status is recorded

to indicate this was a collision avoidance stop.

The decel distances are calculated in 80 bit floating

point hardware with the following math coprocessor using

"reverse polish" style routines similar to this one:

Function XDecelDistance:longint;
begin
FInit;
PushLongint(XAxis.ProfileVelocity);
PushLongint(XAxis.ProfileVelocity);
FMul;
PushLongint(XAxis.Decel);
FDiv;
PushLongint(2);
FDiv;
XDecelDistance:=PopLongint;
end;

Implementation Results

This collision avoidance task was described using

Douloi Automation's Servo Application Workbench software

tools. The routines were downloaded into a Motion Server

control card which has a 128 MHz 486 processor and floating

point coprocessor. The main looping body of the

WatchForCollision routine was measured to take 35 micro-

seconds of time.

In this particular application brushless motors were

being used and the controller sample rate was set to 2 kHz. Of

the 500 microsecond budget available to the controller,

approximately 105 microseconds was being used for general

motion control of the application including analog input

monitoring and filtering for joystick control. Of the remain-

ing 395 microseconds, the 35 microsecond collision avoid-

ance calculation time represents less than a 10% load of the

controller's remaining time budget. The collision avoidance

routine could run every controller sample period without

seriously loading the controller. The calculation time would

increase for more descriptive safe-zones such as diagonal

lines, circles, and arcs.

In this particular application the host software was

responsible for downloading polygon coordinates into the

controller. This turned out to be troublesome as it required the

software engineer to do some additional work interpreting the

file and downloading the numbers into the controller before

the collision avoidance benefit would be realized. In subse-

quent applications the safe-zone geometry will most likely be

stored in on-board flash to minimize the amount of support

host software designers must provide and to make the ma-

chine as independently safe as possible.

Summary

Machine control software is increasing in complexity.

The cost of a machine crash is increasing in cost. Using

motion controller resident collision avoidance, the risk of

damage to a machine can be decreased both during develop-

ment and run-time.

A motion controller having sufficient computational

power, multithreading resources, and on-board application

support tools can implement a reactive collision avoidance

method. The incremental load on the motion controller can be

less than 10% of the remaining available control resources

after the controller has completed other time critical applica-

tion tasks.

Isolating collision avoidance from host software pro-

vides a higher integrity safety-net as defects and defect

patterns that might be present in the host software do not also

corrupt collision avoidance.

Bibliography

1) Lozano-Perez, Tomas, "Spatial Planning: A
Configuraton Space Approach", Artificial Intelligence
Laboratory, Massachusetts Institute of Technology,
December 1980

2) Andrews, J. Randolph: "Motion Server - A Next
Generation Motion Controller Architecture”, In
Proceedings of the Twenty Fifth Annual Symposium
on Incremental Motion Control Systems and Devices,
San Jose, CA, 1996.

About the Author

J. Randolph Andrews received his B.S. M.E. in 1981,
B.S. E.E. in 1981 and M.S.M.E. in 1983 from the
Massachusetts Institute of Technology.

Andrews spent 4 years at Hewlett Packard's corporate
research laboratory in the Applied Physics Research
Center as well as the Manufacturing Research Center.

The following 4 year period was spent with Galil
Motion Control.

In July '91 Andrews founded Douloi Automation, Inc.
to provide motion control hardware and software
systems for use with Microsoft Windows. Douloi
Automation also provides turnkey automation solutions
for advanced automation applications.

Professional interests include motion control, software/
electrical/mechanical system design trade-offs, high
abstraction programming and visual programming
techniques and tools.

