
"Motion Server" - A Next Generation Motion Controller Architecture

Introduction

Automatic machines using motion control grow more

sophisticated. Advances in electronics allow motion control-

lers to more accurately position motors. However the key issue

in completing an automated machine is the software which

manages information and control.

Setup software helps configure general purpose mo-

tion control products for their particular use in a machine.

Test software moves different sections of a machine in test

patterns to confirm proper operation of the control system and

mechanism. Application software describes the machine’s

overall behavior and provides an operator interface to direct

the machine. Diagnostic software studies the machine during

normal operation and collects information to direct corrective

action.

Because machines are physical in nature, the software

that controls them needs to have a strong sense of time. This

“hard-real-time” software needs to be simple to describe and

construct.

A hardware/software motion controller architecture

called “Motion Server” is presented which responds to these

issues.

 Why isn’t machine control easy?

It’s unusual for an advanced motion controlled ma-

chine to be finished on schedule. Why is this so? Automation

projects are by nature interdisciplinary and often have new

mechanical elements, new electronics, new wiring, and new

J. Randolph Andrews
Douloi Automation, Inc.

740 Camden Avenue Suite A1
Campbell, CA 95008-4102

(408) 374-6322

software. When problems are encountered there are many

possible explanations ranging from mechanical binding to an

optical sensor being out of adjustment. In many cases the total

control system is composed of pieces having different com-

mands, languages, and communication standards. This situ-

ation is pictured in Figure 1.

Operator Interface

Industr ial PC

Robot
Control ler

Smart Dr ive

IO

Pendant

Figure 1. "Glue Engineering" Problem

 Integrating these different elements together in-

volves “glue engineering”. Important information residing in

each piece may not be visible through the communication

links that were created during the “glue” step. Not being able

to see what’s going on in the pieces thwarts the system

integration effort.

Machine developers need a clear view into the opera-

tion of their machine to see actual behavior and direct the

machine’s development.

Paper Presented at the
1996 Incremental Motion

Control Systems and
Devices Symposium

Copyright © 1996 Douloi Automation
A U T O M A T I O N

How Can the Controller Help?

The controller should simplify communication be-

tween different parts of the system and ideally require no

additional communication at all by encompassing the re-

quired control functions itself. This reduces the amount of

“glue engineering” and helps maintain a simpler, more

cohesive control system.

In real applications there is often an additional func-

tion required which is not part of the standard control system.

A controller should accordingly support a simple, “open”

hardware standard for adding these missing functions.

Software for the various setup, test, application, and

diagnostic purposes should be available “off-the-shelf” as

much as possible. Several of these purposes are general in

nature and not application specific.

Diagnostic software should be able to tap into the

control system during normal machine operation to study the

machine “live”. The important problems to study occur

during actual machine operation, not during an artificial test

case that a diagnostic tool may be limited to.

The control system should be tailorable to respond to

unique application requirements. Application programs which

operate at the controller sample rate allow coordination

tailoring and timely data collection. As well as software

flexibility the controller architecture should support hard-

ware customization with rapid turn-around at least on a

consult-the-factory basis.

Motion Server Architecture Description

Motion Server is a controller architecture involving

both hardware and software elements. Figure 2 shows an

overview of the control system.

The left half of the figure represents a host computer.

This computer is most likely running a familiar but not

necessarily real-time operating system such as Windows ’95.

In this computer several programs are active and communi-

cating to Motion Server. These programs are “motion client”

programs and each has its own communication channel.

Inside Motion Server, indicated on the right side of the figure,

are several hard-real-time programs providing services needed

by these client programs. Motion Server provides real-time

services on behalf of non-real-time motion client programs.

Hardware Description

In this particular embodiment, Motion Server is a

long-slot ISA card containing the following items:

• 486 DX/2 or DX/4 processor

• up to 1/2 Megabyte of high-speed memory

• up to 16 axes of control

• servo or stepper control on a per-axis basis

• tandem watchdog safety system

• 48 configurable IO points

• PC/104 isolated “bridge”

• FPGA based "downloadable hardware"

• non-volatile configuration memory

Motion Server uses a single, fast, general purpose

processor for all of the computation. This processor performs

profiling, PID control laws, coordination, and application

threads. As well as filtering mathematics, Motion Server is

performing high-level language execution where the at-

tributes of a 486 class processor are particularly beneficial.

The 80 bit floating point processor in the 486 is a valuable and

convenient resource when performing kinematics or special-

ized math functions. To keep the architecture simple and

reduce communication overhead it was judged best to use the

"processor budget" to purchase a single high performance

processor than multiple specialized devices.

Motion Server contains 1/2 Megabyte of "cache ram"

high speed memory, and no "DRAM" slow memory at all.

Based on the same principle as processor selection, it was

judged better to have a single, simple, high performance

solution to this controller function than to support a smaller

amount of high speed memory and additional slow memory.

This high speed memory is specifically for the real-time

Figure 2. Motion Server Architecture

activities being performed by Motion Server. Operator con-

trol panels and software activity occurring in the host com-

puter, on the left side of Figure 2, do not absorb any of this

motion server memory.

To determine if 1/2 Megabyte of memory is sufficient

a comparison can be made with Douloi's current generation

controller product, SI-3000. The most memory-consuming

application developed at Douloi Automation during the last

4 years with SI-3000 was a surface mount assembly machine.

This machine involved 12 axes of control, 4 pickup heads,

nozzle change system, synchronous part handling from part

feeders of multiple types, vision system, graphical operator

interface, 192 points of conventional IO, RS-485 smart IO

communication, RS-232 pendant communication and mul-

tiple data bases. The real-time memory requirements of this

application were 320K. 512K of memory should serve well.

Motion Server supports 16 axes of control on a single

ISA card. Each axis can be configured as a servo or stepper

motor axis. Each axis supports high speed capture of position,

high speed compare for precise IO control, and differential

encoder inputs with digital filters for improved noise immu-

nity.

Motion Server uses a "tandem" watchdog including

both an analog circuit based watchdog timer as well as digital

count-down based watchdog timer. Both watchdog timers

must agree that the system is properly operating for power to

be applied to the motors. This tandem design safeguards the

Communicat ion
Channels

Mot ion Server

Motion Clients

IO Display

Control Panel

Host PC running Windows '95

Diagnose

Posit ioner

Part
Presenter

IO
Monitor

M16

M15

M14

M6

Scara
Kinematics

Data
Collection

Workcel l
Control

M 3

M5

M 4

M 1

M 2

system even if an under-voltage PC causes fundamental

signals, such as the system clock, to operate incorrectly.

Motion Server contains 48 IO points which can be

configured as inputs or outputs in 4 bit groups. The PC/104

isolated “bridge” allows additional digital, analog, and com-

munication IO to be added to Motion Server. PC/104 is a

popular industrial format offering good value and small size.

The PC/104 functions are provided in an isolated manner so

as to benefit from the “openness” of the PC/104 standard

while not exposing motion server to possible problems that

could occur if an add-on PC/104 card misbehaved. Even if a

PC/104 card grounds its data lines, the Motion Server proces-

sor is able to continue operation and maintain control of the

system.

Motion Server uses downloadable Field Program-

mable Gate Array technology for host communication, servo

control hardware, and stepper control hardware. The motion

controller hardware is "constituted" from descriptions resi-

dent in Motion Server non-volatile memory. Hardware spe-

cials, in the past requiring new board layouts and parts, can

now be implemented by downloading "different hardware"

into these flexible devices. This dramatically reduces the

turn-around time and expense for realizing hardware spe-

cials. The "hardware" can be distributed on a floppy disk to

update the non-volatile memory in the controller card.

Software Description

Motion Server provides a hard-real-time

multithreading kernel which supports up to 12 threads. Each

thread can execute every controller sample period. This

allows application programs to describe coordination tailored

relationships between axes such as robot kinematics, elec-

tronic gearing, electronic camming, tangent servo, etc. The

axes in the control system can be arranged into groups which

are governed by different threads. These groups can act

independently or cooperatively as required by the application.

Several different programs can be downloaded into the con-

troller and operate concurrently to operate the machine and

perform diagnostics.

Programming

Motion Server can be programmed in a variety of

ways. A set of “personalities” is available to reduce the

programmer’s learning curve. Personalities include:

• G Code

• HPGL

• Binary Command

• ASCII Command Packet

• Windows Dynamic Link Library

• Delphi VCL

• Microsoft OCX

• Douloi Object Pascal

While a particular personality is active on one commu-

nication channel other clients can communicate to Motion

Server on other channels with other personalities based on

whatever is most suitable for their jobs.

The different personalities available cover a range

trading off ease of use with sophistication. The most advanced

personality is the Object Pascal language expressed through

Servo Application Workbench, a visual programming tool.

SAW is specifically designed to simplify the development of

hard-real-time software for motion controlled machines. SAW

is similar in style to Visual Basic or Borland’s Delphi

environments. The benefit of using this tool is that the

outcome of the programmer’s work is tailored for real-time

motion control.

As well as machine behavior, SAW can describe the

operator interface and control panel of a machine. A SAW

program includes in one representation the host application

shown on the left side of figure 2 and the real-time behavior

shown on the right side of figure 2. The communication link

required for their cooperative relationship is provided auto-

matically. A Servo Application Workbench Programming

Session is shown in Figure 3.

The workcell contains the following elements:

(1) 4 axis scara assembly robot with 2 axis end effector

(1) 3 axis scara adhesive robot

(1) 2 axis adjustable width conveyor

(2) 1 axis part presentation elevators

(10) pneumatic actuators

(50) digital inputs

(20) digital outputs

(1) Graphical Operator Interface

Assembly bases arrive and queue on a variable width

conveyor. Adjusting the conveyor width is done by stepper

motors at machine setup time and is not time critical.

Bases are detected by optical sensors and fixtured by

pneumatic pins. The 3 axis robot applies an adhesive pattern

to several surfaces inside the base while the assembly robot

retrieves 2 parts from the part presentation tools. The adhe-

sive robot then retracts and the assembly robot places the

parts. The base is then released downstream and replaced

with the next incoming base.

After a part has been removed the part presentation

tools use servo and pneumatic actuators to advance their next

parts into position for retrieval.

Application Issues

This application involves concurrency. While the

adhesive robot is performing the glue operation the assembly

robot is retrieving parts. As soon as parts are retrieved, each

part feeder performs the necessary actions to present the next

part as the robot is moving towards the assembly locations.

Along with independent operation of these different

systems is the need for proper “synchronization” at specific

points. If the part presentation tools have not yet provided a

part, the assembly robot must wait for one. If the adhesive

robot has not completely retracted, the assembly robot must

not attempt to move over the base because of the risk of

collision.

Figure 3. SAW Programming Session

An operator interface button has been chosen from

among the assortment of controls on the left side of SAW. The

attributes describing the button are being placed in this dialog

including the buttons name, legend, and behavior when

pressed.

Application Example Comparison

To illustrate how the Motion Server architecture sim-

plifies advanced machine control a comparative example is

presented.

Functional Description

Figure 4 shows an overview of a robotic workcell.

Assembly
Robot

Conveyor

Part Presenters

Adhesive
Robot

Figure 4. Assembly Workcell

an order of magnitude. Of course, in practice, the bandwidth

of the communications goes down at the more remote levels.

In today's industrial electronics, the stages of interest for

intertask communications are:

1) Between registers on a single integrated circuit

2) Between ICs on a single circuit board

3) Between circuit boards in a single backplane box

4) Between backplane boxes in a single enclosure

5) Between enclosures in a single room

6) More remote communications.

I would suggest that "expense" as described here

might also include system integration expense. The conven-

tional approach as described would be case 4, the robot

controllers and PC in a single enclosure.

In response to this desire for close communication the

point might be made "But those are independent systems.

They should be separated from each other". An important

principle in software engineering is "encapsulation", the

deliberate concealment of information in one system from

another. This important concept helps partition problems,

reduce complexity, and safeguard integrity. In the abstract

world of software, separate systems can be independent and

truly uncoupled.

However in machine control there is physical interac-

tion between systems creating a coupling that may need to be

understood. The robot controller and end effector may be

conceptually quite separate and electrically driven from dif-

ferent controllers. However during operation unexpected

torques in the robot elbow, for example, may result from the

end effector gripping a part off-center. To see and diagnose

this condition involves collecting torque information from

the elbow and the gripper at a rate on the order of the controller

sample period. This data collection needs to occur during the

actual grasping action as described by the application soft-

ware. This type of real-time "information visibility" degrades

with each step down the list described by Mr. Wilson. This

particular data collection example becomes more difficult

when the information is in different controllers.

The easiest way to describe this type of behavior is with

simple, small programs, one for each section of the system.

These small programs then communicate to each other to

provide the necessary synchronization.

Conventional Approaches

A conventional approach might use pre-packaged

robot controllers, one for each robot. An additional "stand-

alone" multiaxis controller might be chosen to handle the

robot end effectors and additional workcell tooling. A PC is

used as the “workcell controller” coordinating these ele-

ments. This approach is represented in Figure 5.

Mult iaxis
Smart Dr ive

Assembly
Robot IO

Industr ial PC

Adhesive
Robot

Control ler

Assembly
Robot

Control ler

Adhesive IO

Figure 5. Conventional Control Approach

This approach does provide the benefit of having

several small programs running. Each piece of equipment has

its own dedicated controller running its particular program.

However there is an "information visibility" issue which

thwarts system integration and diagnostics.

Curtis S. Wilson of Delta Tau Data Systems in a recent

article quoted the following observation regarding the ex-

pense of "Intertask communications":

The closer together two tasks are done, the less

expensive the communications are between the tasks for a

given bandwidth. A good rule of thumb is that for each stage

more remote the communications between two tasks, the cost

of the communications for equivalent bandwidth goes up by

M 3

M 1

M 2

Assembly
Robot

Adhes ive
Robot

Conveyor
Width
Control

Part
Presenters

D e b u g
Moni tor

Mot ion Server

IO
Moni tor

Workce l l
Contro l

M 1 3

M 1 2

M 1 1

M 1 0

M 9

M 8

M 7

M 5

M 6

M 4

Figure 6. Motion Server Approach

Communication between threads is accomplished by

simple shared program variables. Because all of the indepen-

dent activities are in the same processor the communication

issues are greatly simplified. This arrangement is at worst list

item 2, information travelling on the same circuit board

between chips (high speed memory and processor) or at best

list item 1, information moving between registers (or internal

cache) on a single chip.

Architecture Benefits

Simplified real-time communication

All of the real-time information in the system is in the

same processor, and that processor is on the bus of a computer

which can display the information. Information shared be-

tween program threads coordinates machine activities and is

simple to establish.

An additional problem with the decentralized control

illustrated is that the setup, test, application, and diagnostic

software for the robot controller is different than for the

"stand-alone" controller and requires an additional learning

curve.

An alternative conventional solution is to place into

the main PC controller cards for the necessary IO and motion

control. The coordination between these elements could then

be accomplished with a hard-real-time operating system such

as QNX. This is a very capable solution however it does

require extensive knowledge of hard-real-time programming

techniques to make the entire system operate. Programming

in QNX or other tools of similar capability is not like

programming with Visual Basic.

Motion Server Approach

Figure 6 shows how the motion server architecture

would apply to solving this example problem.

This approach also has several distinct "controllers"

as indicated by the labeled circles. However all of these

autonomous controllers are inside Motion Server as indi-

vidual application threads. Motion Server takes responsibil-

ity for the real-time requirements of the application. The IO

resources are selected and axes allocated in groups for use by

the different application threads. Because more IO is required

than the built-in 48 points of IO, an additional IO card is

added to the PC/104 bridge. Each section of the machine is

then directed by its own application thread to keep that part

of the machine running.

Each scara robot has kinematic calculations occurring

so that the mechanism can perform straight-line XY move-

ments. These kinematic capabilities are provided by a pre-

assembled software element as a standard part.

As well as the workcell control application program,

several diagnostic programs are running to aid in system

development.

Improved Diagnostics

The high visibility of system information allows diag-

nostic tools to readily access whatever information is re-

quired. Visual programming tools enable rapid construction

of instruments that can ask application specific questions

concerning the dynamic behavior of a machine.

High Speed Application Programs

Because application programs are compiled rather

than interpreted the 486 processor can execute applications

very quickly. Sample rate applications are common and

enhance the controllers ability to be tailored.

Flexible Hardware

Beyond flexible application programs, the hardware

itself can be reconfigured electronically to reduce develop-

ment time for application specific hardware specials.

Summary

Motion control technology is becoming less about the

physical dynamics of moving objects and more about the

management of information. This information is managed by

software which is used to setup, test, operate and diagnose

advanced machines. An architecture has been presented

which provides a broad set of resources, is extensible, and

simplifies access to this time-critical information. The archi-

tecture accommodates a variety of pre-built tools and person-

alities to simplify and expedite the construction of automatic

motion controlled machines.

Bibliography

1) "A Sercos Alternative", Curtis S. Wilson, Motion
Control Magazine, page 13, January/February 1996

2) Andrews, J. Randolph: "Advanced Motion Solutions
Using Simple Superposition Technique”, In
Proceedings of the Twenty Third Annual Symposium
on Incremental Motion Control Systems and Devices,
San Jose, CA, 1994.

3) Andrews, J. Randolph: "An Advanced Motion
Control System Architecture Based on a 386 PC”, In
Proceedings of the Twenty First Annual Symposium
on Incremental Motion Control Systems and Devices,
San Jose, CA, 1992.

4) Cox, Brad: Object Oriented Programming: An
Evolutionary Approach, Addison-Wesley Publishing,
1986, 1991

5) W. Brogan, Modern Control Theory, Prentice Hall,
Englewood, New Jersey, 1991

6) Brooks, Frederick P., The Mythical Man-Month,
Addison-Wesley Publishing Company, Massachusetts,
1995

7) Budd, Timothy: An Introduction to Object-Oriented
Programming Addison-Wesley, Massachusetts, 1991

8) Ellis, George: Control System Design Guide,
Academic Press, San Diego, 1991

9) Franklin, Gene & Powell, David: Digital Control of
Dynamic Systems, Addison-Wesley, Massachusetts,
1981

10) Meyer, Bertrand: Object-oriented Software
Construction, Prentice Hall, New York, 1988

About the Author

J. Randolph Andrews received his B.S. M.E. in 1981,
B.S. E.E. in 1981 and M.S.M.E. in 1983 from the
Massachusetts Institute of Technology.

Andrews spent 4 years at Hewlett Packard's corporate
research laboratory in the Applied Physics Research
Center as well as the Manufacturing Research Center.

The following 4 year period was spent with Galil
Motion Control.

In July '91 Andrews founded Douloi Automation, Inc.
to provide motion control hardware and software
systems for use with Microsoft Windows. Douloi
Automation also provides turn-key automation
solutions for advanced automation applications.

Professional interests include motion control, software/
electrical/mechanical system design trade-offs, high
abstraction programming and visual programming
techniques and tools.

