
Motion Merging And Other Single Axis Motion Control Challenges

J. Randolph Andrews
Douloi Automation, Inc.

3517 Ryder Street
Santa Clara, CA 95051

Abstract- Single axis motion is often regarded as the

simplest control case. However challenging single axis

problems are found in many industrial applications.

Challenges include motion merging as well as electronic

gearing with boundary cases. Motion merging involves

matching speed to a high inertia, free-moving mass

which is not being controlled, acquiring control, and

realizing a destination position with minimum force

disturbances. Electronic gearing appears straight-

forward until the boundary cases of velocity and

position limits are considered. These example problems

become challenging because of interdependence

between master and slave motion and transitions during

motion. Solutions are presented along with a discussion

of controller attributes that simplify implementation.

I. INTRODUCTION

Although the statement of a motion control

requirement may appear straightforward, there are often

additional complications brought about by boundary

issues and interdependence. Three case studies will be

explored to understand what additional complications

can occur in the areas of electronic gearing and motion

merging and how these issues can be resolved.

II. ELECTRONIC GEARING WITH POSITION
LIMIT CASE STUDY

Electronic gearing is generally used to describe a

ratioed relationship between two motions. There is

conceptually an input to the relationship, labeled a

master, and a responsive output motor, labeled the slave.

Usually the master is not under the control authority of

the motion controller but is an independent motion, such

as a "master line shaft" in a large assembly or packaging

machine.

The principle equation for electronic gearing appears

straightforward:

SlavePosition:=MasterPosition*GearRatio

This relationship is depicted in Figure 1.

Figure 1. Initial Gearing Relationship

This simple relationship is complicated by practical

considerations. The first example is a manual control for

a grinding machine table. In this case, the master is

manually driven handwheel. The objective is to recreate

the familiar crank/motion relationship that is present on

a non-automated, manually driven machine tool. The

principle equation can be implemented with the

following software statements:

Procedure EngageHandwheel;

begin

while true do

begin

Slave.SetCommandedPosition(round(

Master.EncoderPosition*GR));

yield;

end;

end;

What's the first problem with this implementation?

The first problem is a discontinuity when this procedure

starts. There's no assurance that the initial position of the

slave is at the ratioed master position. The first

commanded setpoint calculated could be very far from

the current slave position. This would cause a large

following error and trip the error limit shutdown.

Since we are working with a handwheel, we have

freedom to set the position of the handwheel master axis

to a convenient location. This would not be an option

with the line-shaft scenario. The correction to the first

problem is to provide a Slave Offset, or Y intercept as

shown in Figure 2.

Figure 2. Gearing with Slave Position Offset

This gearing relationship is implemented with the

following procedure.

Procedure EngageGearing;

begin

Offset:=Slave.CommandedPosition;

MasterAxis.SetEncoderPosition(0);

while true do

begin

Slave.SetCommandedPosition(

Offset+round(

Master.EncoderPosition*GR));

yield;

end;

end;

What's the next problem with this implementation?

If driving a free-spinning motor shaft, this gearing

equation works well. But problems occur driving a high

inertia load. In this application the grinding wheel table

being driven weighs many hundreds of pounds. A small

handwheel can be spun, stopped, and started almost

instantly with the flick of a finger. The slaved grinding

table cannot be because of the inertia. In this case,

tracking every slight nuance of the handwheel motion

allowed the operator to create high acceleration

movement and large forces in the transmission.

One approach to solving this problem is a low pass

filter on the handwheel motion. The low pass filter was

implemented with the following approach.

Procedure EngageGearing;

begin

Offset:=Slave.CommandedPosition;

FilteredPos:=Offset;

Master.SetEncoderPosition(0);

while true do

begin

ProposedPos:=Offset

+round(Master.EncoderPosition*GR);

FilteredPos:=

(Kf*ProposedPos)+

((1-Kf)*FilteredPos);

Slave.SetCommandedPosition(

round(FilteredPos));

yield;

 end;

end;

This routine records the Y intercept as before and

proposes a position based on the master position. This

position is then filtered by a weighting term Kf which

must be between 0 and 1. A value of 1 would eliminate

the filter, and a value of 0 would eliminate the incoming

information. Practical values for Kf are in the range of

0.1 The slave commanded position is then set to the

filtered position.

In this particular application, the range of motion of

the grinding machine table is limited. How can position

limits be incorporated into the gearing? Several

behaviors could be specified. If the handwheel was

cranked beyond the table range of motion, the condition

could be considered a fault and the motor turned off.

Alternatively, the motor position could "saturate" at the

limit even though the handwheel traveled further. If this

is chosen, what happens when the handwheel reverses?

Should the handwheel "unwind" back to the point where

table movement stopped, or should the table respond to

reversed motion immediately?

In this case, it was chosen to have the slave position

saturate and have the handwheel behave like a "slip-

clutch". Additional handwheel motion beyond the limit

is ignored, and motion resumes immediately on

handwheel reversal. This behavior is shown

implemented below.

Procedure EngageGearing;

begin

Offset:=Slave.CommandedPosition;

 FilteredPosition:=Offset;

Master.SetEncoderPosition(0);

while true do

begin

ProposedPos:=Offset

+round(GR*Master.EncoderPosition);

PositivePoint:=Slave.PositiveLimit;

NegativePoint:=Slave.NegativeLimit;

if ProposedPos > PositivePoint then

Master.SetEncoderPosition(

round((PositivePoint-Offset)/GR))

else if ProposedPos < NegativePoint then

Master.SetEncoderPosition(

round((NegativePoint-Offset)/GR))

else

begin

FilteredPos:=(Kf*ProposedPos)

+((1-Kf)*FilteredPos);

Slave.SetCommandedPosition(

round(FilteredPos));

end;

yield;

end;

end;

Generally masters are independent and slaves are

dependent. However, in this case, static position limit

information about the slave is used to alter the Master

behavior by position limiting the master.

What are the disadvantages of this approach? One

disadvantage is that the table comes to an abrupt stop

when the slave end of travel is reached. The client

judged that since handwheel motion was generally slow

and end of travel a relatively rare event, this would not

be a problem.

III. ELECTRONIC GEARING WITH VELOCITY
LIMIT CASE STUDY

The next case study concerns a remote control

camera with panning motion controlled by a servo

motor. This application also begins as an apparently

simple electronic gearing application, but the specific

application requirements direct this behavior in a very

different direction than the gearing behavior needed for

the grinding table.

A trackball style input was used as a master input

with the panning motor acting as the slave. For the same

reasons as the grinding application, a low pass filter was

found necessary to improve smoothness during

operation. Smoothness is particularly important because

any jitter is amplified by the radial distance to the

camera subject.

After preliminary gearing it was necessary to support

changing the gear ration on the fly. A digital input was

used to signal that the gear ratio should increase, and

another to signal that the ratio should decrease. While

moving the trackball back and forth the operator uses

buttons tied to these digital inputs to tailor the ratio to

the current viewing distance and desired feel.

The apparent solution is to simply alter the gear ratio

as a function of the time the two inputs are selected.

However changing only the ratio rotates the line in

Figure 3 about the Y Intercept and will not work.

Figure 3. Discontinuity with ratio-only change

If the ratio changes in one sample period by a non-

incremental amount, the slave position would jump in a

discontinuous manner. In order to achieve position

continuity, it is necessary to move the y-intercept. In this

case, the master/slave line pivots about the current

master/slave position rather than the Y axis. Using this

technique, a series of incremental ratio changes would

appear as shown in Figure 4.

Figure 4. Variable Ratio Approach

An additional requirement of the camera panning

application involves managing a velocity limit in the

camera pan motor. Because the ratio is adjustable, it's

possible to select a high ratio and produce handwheel

expressed velocities that can't be obtained by the slave.

What's the appropriate behavior if the slave can't keep

up? In this case, the choice was made for the slave

velocity limit to be converted to a master speed limit

through the current gear ratio. During a slew limit

situation, the master handwheel position is continually

modified to produce the required slippage. This is

shown in Figure 5.

Figure 5. Slave Speed Truncation

The program fragment that implements this slippage

is shown below.

ActualSlaveDelta:=ProposedSlavePosition.X

-LastSlavePosition.X;

if abs(ActualSlaveDelta) > MaxSlaveDelta then

begin

if ActualSlaveDelta > 0 then

begin

Adjustment:=

(ActualSlaveDelta-MaxDelta)/GR;

Master.SetActualPosition(

Master.ActualPosition-Adjustment);

The actual slave position change for a specific

sample is calculated. If that representation of speed is

too large, then a ratioed adjustment is made to the

master so that when the master position is used in the

next step, it will be within the slave’s capabilities.

This is another case where the master is not

completely independent but instead is influenced by the

static slave attribute of a slew limit.

IV. MOTION MERGING CASE STUDY

The last case study is similar in structure to the rodeo

event called calf-roping. The event begins with a calf

darting out of a stall. The calf is pursued by a cowboy on

his horse. Initially, the calf is in the role of the master,

directing the cowboy. The cowboy matches the calf's

speed and throws a rope loosely around the calf's neck.

After establishing the "linkage" between the cowboy and

the calf, the cowboy takes on the role of master in the

relationship. He tightens the rope so as to make a low-

compliance connection between himself and the calf.

The cowboy then dismounts from his horse and

decelerates stopping the calf through the linkage. This

relationship is depicted in figure 6.

Figure 6. Cowboy and Calf Velocity Profiles

The "calf" velocity is shown in the top curve and the

"cowboy" velocity is shown on the bottom curve. The

calf takes off at high acceleration. The Cowboy

accelerates and matches speed. The cowboy then

apprehends the calf and slows down both. Note that the

calf might not be holding a steady velocity as the

Cowboy tries to match the speed.

The actual piece of equipment being controlled is a

forging press. A section of the machine is being back-

driven outward by actions of the press. This moving

section is like the runaway calf. An attached servo motor

plays the role of the cowboy which must apprehend the

machine section, slow it down, and stop it. An additional

requirement beyond just stopping is stopping at a

particular point.

As is characteristic of these case studies, there is an

initial approach which falls short and requires some

modification to solve practical aspects of the problem.

The approach taken was to mimic the role of the

cowboy. A position controlled computational, but non-

physical, virtual axis chases after the machine section

matching the measured speed of the back-driven

machine section. When the speeds match, a one-to-one

electronic gearing link is established between the virtual

axis and the physical servo motor merging the two

together to produce a commanded trajectory for the

physical servo motor. The motor is then turned on. The

virtual axis is then told to stop. This causes the physical

servo to also stop through the gearing relationship. Like

the rodeo event, there is an initial pursuit, a link

established between the master and the slave, and a

deceleration of the master causing the slave to stop. This

approach was implemented with the following

procedure.

Procedure EngageOnTheFly;

begin

Anchor:=Motor.ActualPosition;

Delay(100);

MeasuredSpeed:=

(Motor.ActualPosition-Anchor)*10;

Master.Abort;

Master.SetActualPosition(0);

Master.SetAccel(10000000);

Master.SetDecel(Motor..Decel);

Master.Jog(MeasuredSpeed)

while Master.ProfilePhase <> 2 do

yield;

Offset:=Motor.ActualPosition

-Master.CommandedPosition;

Motor.SetMotor(on);

BeginTask(TaskAddr(Gearing));

Try

Master.MoveTo(Destination-Offset)

Recover

Begin

Master.Stop;

Master.MoveTo(Destination-Offset);

end;

GearingEnabled:=false;

 end;

The first part of this procedure measures the actual

speed of the motor by measuring position change over a

100 millisecond period. The virtual master is then set to

0 position, high acceleration, and a deceleration based

on the capabilities of the physical motor. The virtual

master then jogs up to the measured speed. The

procedure waits for the acceleration phase to complete

and continues after the virtual master is at speed. An

offset is then calculated as the position difference

between the physical motor and the virtual master. This

is quite analogous to the length of the cowboy’s rope

between himself and the calf. The motor is then turned

on and a gearing relationship initiated between the

motor and the virtual master. The virtual master is then

told to move to the desired destination minus the offset

so as to realize a desired physical motor position. It

might not be possible for the motor to reach the

destination at the current speed and the requested decel

if it is too close to the intended destination. In this case

the motor stops and reverse to obtain the required

position.

This routine references another routine, Procedure

Gearing. This routine is shown below:

Procedure Gearing;

Begin

GearingEnabled:=true;

while GearingEnabled do

begin

Motor.SetCommandedPosition(

Master.CommandedPosition+Offset);

yield;

end;

end;

This gearing routine is like the previous gearing

routine with a gear ratio of 1. Although apparently

straightforward, initial testing of this approach did not

prove satisfactory. At the point of motion merging when

the motor was turned on there was a force disturbance.

The merge was not smooth. It was noted that the

velocity measurement was an average measurement

taken over a period of time (100 milliseconds) and that

the instantaneous velocity at the merge point was slower

than the average because the back-driven, coasting,

system was decelerating. The inertia of the machine

section made any velocity mismatch a large force

disturbance.

It was judged that there needs to be some compliance

that could tolerate a slight velocity mismatch. The

approach taken was to turn on the motor at the same

point as before, but with 0 servo gain. This corresponds

to the cowboy lassoing the calf, but with a large rope

opening that initially produced no force influence on the

calf. After establishing the link and turning the motor

on, the gain was then ramped up to a normal position

control value over time. This is depicted in Figure 7.

Figure 7. Profiled Gain

This profiling of the gain servo parameter was

initiated by the following program lines in the previous

procedure, just before turning on the motor.

InitialGain:=Motor.Gain;

Motor.SetGain(0);

BeginTask(TaskAddr(CinchGain));

Here the gain of the motor is noted, the gain set to 0

and a task started which manages ramping the gain. This

ramping of the gain occurs concurrently with the other

activities. The ramping is done by the following

procedure.

Procedure CinchGain;

Begin

for scanner:=1 to CinchTime do

begin

Motor.SetGain(

InitialGain*scanner div CinchTime);

yield;

end;

end;

This routine smoothly transitions the motor gain

from the previously set value of 0 up to the InitialGain

setting over a period of time identified as CinchTime. In

the actual application, CinchTime is approximately 300

milliseconds as compared to the previous case where the

transition was instant. This technique alleviated the

force disturbance and is the method of control being

used in the forge press today.

This is another case where the master is not

completely independent, but is responsive to dynamic

information from the slave. The master had to match the

speed of the slave prior to engaging the slave. After

engagement, the master was able to act in an in-

dependent manner.

V. CONTROLLER ATTRIBUTES WHICH
SIMPLIFIED IMPLEMENTATION

What are some of the attributes of the control system

that allowed these various techniques to be

implemented? One helpful attribute is the ability to

construct sample rate procedures. In these examples,

groups of instructions were performed every controller

sample period to achieve custom profiler operations.

Controller sample periods are increasing along with

improvement in motor performance. Sample rates of 4

kHz are now common. These sample rates only provide

250 microseconds for control law, profiling, and custom

sample rate application software to perform.

The control system being considered must be able to

insure that all of the required calculations can be

performed within the sample period. For example, in the

course of adjusting the gear ratio on the fly, it is

necessary to change the ratio and as well to change the

Y intercept of the gearing in one sample. If only half the

calculation is performed, the state of the controller is left

incomplete and incorrect for that sample creating a

position discontinuity in the slave.

Another helpful controller attribute is access to all

the required information. Some control systems provide

specific “black-box” built-in behavior. In these

examples it was important to have a controller flexible

enough to describe a chosen behavior rather than being

restricted to a fixed built-in behavior that didn't meet the

application need. This flexibility was enabled by having

access to all of the required information, not just the

ability to call a built-in routine.

VI. CONCLUSIONS

Control problems are seldom as simple as they

appear, and even single axis applications can be

challenging. Complications can arise because of

boundary cases and transitions in control modes while in

motion. Controllers which support high speed

application programs and which provide access to

detailed controller state can be flexible enough to

construct tailored, application specific solutions to these

challenging problems.

VII. REFERENCES

[1] Instruction Manual for Motion Server & Servo
Application Workbench, Douloi Automation, Inc.,
Santa Clara, CA March 1999

[2] Andrews, J.R. “Motion Server – A Next Generation
Motion Controller Architecture”, Proceedings of the
Twenty Fifth Annual Symposium on Incremental
Motion Control Systems and Devices, 1996, pages
1-8

[3] Meyer, Bertrand: Object-Oriented Software
Construction, Prentice Hall, New York, 1988

About the Author

J. Randolph Andrews received his B.S. M.E. in

1981, B.S. E.E. in 1981, and M.S. M.E. in 1983 from

the Massachusetts Institute of Technology. Andrews

spent 4 years at Hewlett Packard’s corporate research

laboratory in the Applied Physics Research Center as

well as the Manufacturing Research Center. The

following 4 year period was spent with Galil Motion

Control. In July 1991 Andrews founded Douloi

Automation, Inc. to provide motion control hardware

and software solutions for use with Microsoft Windows

and Windows NT. Professional interests include motion

control, software/electrical/mechanical system design

tradeoffs, high abstraction programming, real-time

programming, and visual programming techniques and

tools.

Paper Presented at the 2000 Incremental Motion

Control Systems and Devices Symposium. Copyright ©

2000 Douloi Automation, Inc.

