
1

AN ADVANCED MOTION CONTROL SYSTEM ARCHITECTURE
BASED ON A 386 PC

J. Randolph Andrews
Douloi Automation

740 Camden Avenue Suite A1
Campbell, CA 95008-4102

(408) 374-6322 A U T O M A T I O N

Paper presented at the
1992 Incremental Motion

Control Systems and
Devices Symposium

Copyright © 1992 Douloi Automation

Introduction

The equations behind digital motion control are

continually finding better calculation vehicles as micro-

processors and DSP’s advance in performance and cost

effectiveness. However solving a motion control appli-

cation involves much more than timely execution of

servo loops. There are many system level issues to be

addressed. The system’s objective needs to be expressed

in at least one and perhaps several motion application

programs. Information from non-quadrature as well as

quadrature sensors needs to be interpreted and used by

the motion controller. Other controlled devices need to

be coordinated with respect to motion events. The opera-

tor needs to communicate to the system to request and

alter system actions.

Many motion controller manufacturers respond

to system level needs by making motion controllers

more like computers. These motion controllers have the

ability to run application programs, have IO buses that

communicate to external hardware, and have serial ports

that allow connection to operator interface terminals.

An alternative approach to making a motion con-

troller more like a computer is to make a computer more

like a motion controller. This paper describes an archi-

tecture based on a 386 PC which takes this second

approach.

The following sections include an example prob-

lem, architecture description, problem solution, discus-

sion of architecture contributions towards the solution,

additional architecture benefits and a summary.

Implementation Context

The illustration is to be represented with the

following equipment:

• Two servo motors, one representing the Ferrari

and the other representing the Police Car

Example Problem

To provide a context for studying motion control-

ler attributes consider the following Ferrari and Police

Car pursuit problem:

1) You are driving a bright red Ferrari on Inter-

state 80 speeding through Nevada at 100 m.p.h..

2) A Police car hiding behind a billboard watches

you flash by and begins pursuit.

3) The police car matches the speed of the Ferrari

and follows maintaining a fixed distance while

the Ferrari continues travelling at different speeds,

occasionally slowing down and speeding up. The

police car follows for a mile to document the

Ferrari’s speed violation.

4) After a mile of pursuit the police car starts

flashing its lights and “catches up” to the Ferrari

so that as well as travelling at the same speed both

vehicles have the same position less the length of

a car.

5) After catching up with the Ferrari, both cars

slow to a stop.

2

• Lights which are switched on and off through

industrial output modules controlled by a third

party IBM PC IO board. These lights represent the

police car’s flashing lights.

Figure 1 shows example Ferrari and Police car

velocity profiles if the Ferrari drives at constant speed.

Figure 1. Constant Speed Ferrari

 The Ferrari velocity is represented by the dotted

line and the Police Car velocity by the solid line. The

police car accelerates after the Ferrari and matches

speed. After a period of time the solid line rises indicat-

ing that the police car is overtaking the Ferrari. After the

police car catches up both cars travel at the same speed

again and stop together. Acceleration may be different

from deceleration. Acceleration and deceleration values

for the Ferrari, police car, and "catch up" section may be

independent of each other.

Figure 2 shows the velocity profiles when the

Ferrari speed varies. Note that as well as tracking the

Ferrari velocity during the initial pursuit period the

police car is able to track the velocity while overtaking

the Ferrari.

 Motion Control Requirements of Problem

 This example requires the following motion

control system capabilities:

• Variable velocity profiles (Ferrari’s joy ride)

• Ability to accelerate to a time varying speed and

match it (police car pursuit)

• Position tracking or “electronic gearing” (police

car “locking” onto the same speed as the Ferrari

and maintaining a fixed distance from the Ferrari

while the Ferrari continues to joy ride at various

speeds)

• Trapezoidal phase advance on electronic gearing

(police car catches up while continuing to track)

• Ability to motion mode “splice” from velocity

mode to electronic gearing mode to stop while in

motion

• Ability to coordinate IO with motion events

(flashing lights when police car closes in)

• Ability to communicate to third party hardware

(Industrial IO attached to PC add on board)

In an actual industrial application these capabili-

Figure 2. Variable Speed Ferrari

3

ties might solve a robotic assembly problem where

multiple members need to “intercept” at a particular

point to accomplish a part insertion.

Architecture Description

Figure 3 shows an overview of the 386 based

motion control system architecture.

The system is composed of the following compo-

The system architecture is based on a 386 PC with

64K cache and 32 bit wide data paths. This has become

a commodity machine. A typical “base” system includes

a 386 processor, 64K cache memory, 1 Megabyte of

dynamic memory, floppy disk drive, floppy and hard

disk controller, parallel and serial IO ports, keyboard,

power supply, and enclosure. Street prices for such a

base system are about $500 in March ’92 and continue to

decrease. To make the computer useful requires addi-

tional memory, hard disk, VGA monitor, VGA graphics

card, DOS software, Microsoft Windows, and Mouse.

These extra components might cost about $800 for a

computer system cost of about $1300.

“Dumb” Servo Interface Card

Installed in the IBM PC's IO expansion bus is a

“dumb” servo interface card. This card contains:

 • 8 MHz quadrature inputs with 3 bit filters

• High speed position capture

• 12 bit motor command outputs

• Uncommitted polling style inputs

• Uncommitted capture inputs

• Uncommitted outputs

• Watchdog safety system

 This card does not contain a microprocessor and

the associated ram, rom, communication chips, and

device selection. These are not needed since the 386

itself will serve as the motion control processor.

Interrupt Handler

The 386 provides motion control functions by

responding to a timer interrupt which occurs at 1 kHz.

This interrupt handling routine performs three major

functions.

The first function is servo control law execution.

The current design controls from 1 to 6 axis of motion

with the familiar zero, pole, integrator filter used in

many motion control systems. This operates at a 1 kHz

sample rate providing comfortable closed loop system

nents:

• 386 based PC as hardware platform

• “Dumb” Servo Interface Card

• Motion System/Multitasking Interrupt Handler

• Multiple motion application programs

• Microsoft Windows in standard mode

• Servo Application Workbench with Compiler

These elements are now described in detail.

386 based PC as Hardware Platform

Figure 3. Architecture Overview

4

frequencies of 100 Hz and below.

The second function is motion profiling. The

system is able to profile motion for 6 physical axis and

3 additional “virtual” axis. These 9 axis can be combined

in different arrangements to form various multi-axis

coordinated “machines”. Any particular machine can

perform coordinated motion along an arbitrary path.

Multiple machines, each running multiple axis, can

perform motion concurrently and independently. The

motion profiler uses a dynamic profiling technique

which permits changing profile parameters on the fly

including acceleration, deceleration, slew speed, desti-

nation and in some cases motion type. This permits

motion mode "splicing" without stopping. For example

a positioning move can be changed to a jog at a new

speed on the fly.

The third function is multitasking. Multiple mo-

tion application programs are resident in the computer.

The interrupt handler contains a multitasker which acti-

vates and manages the operation of these programs.

Multiple Motion Application Programs

As many as 6 separate motion application pro-

grams (which are distinct from motion profiles) can be

running concurrently and independently at any particu-

lar time. These programs can communicate to each other

through shared memory and the file system. They can

also access the motion control system, communicate to

IO boards in the PC IO expansion bus and communicate

with Windows applications created by the Servo Appli-

cation Workbench.

Microsoft Windows in Standard Mode

When the computer is not responding to the

motion system interrupt it is running Microsoft Win-

dows in standard mode. “Standard mode" allows the 386

to access up to 16 megabytes of memory for Windows

use. Windows provides the operating environment for

motion application development and operation.

Servo Application Workbench

The Servo Application Workbench (SAW) is a

Windows application which greatly simplifies the cre-

ation of multitasking motion application programs and

operator control elements to direct them. Figures 1 and

2 are SAW applications that perform the pursuit ex-

ample. Actual motion time history is collected and

displayed as part of their operation.

Inside the Servo Application Workbench is a high

level language compiler. The compiler changes the

descriptions of the motion applications into native 386

32 bit object code which executes very quickly. The

compiler “knows” about the motion system, the

multitasking system, and Windows. This permits the

application developer to access different system re-

sources in a consistent way without having to worry

about how these resources are being provided.

The Servo Application Workbench allows the

developer to construct motion applications in a “clip art”

fashion by pasting pre-fabricated parts and assemblies

into the application. After “screen painting” the applica-

tion and filling in the program’s behavior the Servo

Application Workbench compiles the motion applica-

tion programs and creates the associated Windows appli-

cation to operate them.

 Problem Solution

The following code shows one possible solution

to the Ferrari and Police Car pursuit problem:

var Ferrari:T1Axis;
var PoliceCar:T1Axis;
var FollowingDistance:T1Axis;
const aMile=5280000;
const LengthOfCar=12000;

5

 Ferrari.CommandedPosition-
 FollowingDistance.CommandedPosition);
end;

The following routine performs IO control through

the third party hardware:

{------------------------------------
-----}
procedure FlashPoliceCarLights;
{------------------------------------
-----}

 const IOBoardAddress=1000;
 var TurnLightsOn:boolean; static;

begin
TurnLightsOn := not TurnLightsOn;
if TurnLightsOn then
 PortWriteByte(IOBoardAddress,1);
else
 PortWriteByte(IOBoardAddress,0);
end;

This routine directs the Ferrari's joy ride:

{------------------------------------
-----}
procedure FerrariJoyRide;
{------------------------------------
-----}

begin
Ferrari.SetAccel(0.03);
Ferrari.SetDecel(0.015);
Ferrari.Jog(35);
Ferrari.Delay(1000);
while true do
 begin
 Ferrari.Jog(35);
 delay(1200);
 Ferrari.Jog(25);
 delay(800);
 end;
end;

 Explanation of Operation

Variables are declared to represent the different

{------------------------------------
-----}
procedure PursueFerrari;
{------------------------------------
-----}

begin
Ferrari.Init(XAxis);
PoliceCar.Init(YAxis);
FollowingDistance.Init(RAxis);
FollowingDistance.SetAccel(0.04);
FollowingDistance.SetDecel(0.02);
Ferrari.ServoOn;
PoliceCar.ServoOn;
BeginTask(Addr(FerrariJoyRide));
Delay(5000);
PoliceCar.SetAccel(0.04);
PoliceCar.SetDecel(0.04);

repeat
 PoliceCar.Jog(Ferrari.ProfileVelocity);
 Yield;
until
abs(PoliceCar.ProfileVelocity
 -Ferrari.ProfileVelocity) < 0.1;

FollowingDistance.SetCommandedPosition(
 Ferrari.CommandedPosition
 -PoliceCar.CommandedPosition);

ScheduleTask(Addr(PoliceCarTrackFerrari,
 InvokeEverySample));

PoliceCar.WaitForDistanceChangeOf(aMile);
ScheduleTask(
 Addr(FlashPoliceCarLights,1000));

FollowingDistance.MoveTo(LengthOfCar);
Delay(500);
AbortTask(Addr(FerrariJoyRide));
Ferrari.Stop;
end;

The following routine is started by PursueFerrari

as an autonomous task:

{------------------------------------
-----}
procedure PoliceCarTrackFerrari;
{------------------------------------
-----}

begin
PoliceCar.SetCommandedPosition(

6

objects in the problem. A Ferrari and Police car are each

declared to be a one dimensional axis using one of the

pre-defined object types of the language. Other machine

dimensions are available, such as a T2Axis for a 2 axis

machine or a T6Axis for a six axis machine. The

following distance is also defined to be a one dimen-

sional axis. The constant "aMile" represents the distance

the police care will track the Ferrari. The constant

"LengthOfCar" represents how close the police car will

close in on the Ferrari.

 Procedure PursueFerrari begins by initializing

these variables. The Ferrari is associated with the XAxis,

the PoliceCar is associated with the YAxis and the

FollowingDistance is associated with the RAxis, one of

the three available “virtual” axis which behaves like a

normal axis but has no associated motor.

The Ferrari is started on its joy ride with the next

line, and is given a five second head start on the police

car with a Delay instruction.

The repeat loop tells the PoliceCar to match the

Ferrari’s speed. Yield is an instruction which tells the

task to “give up” execution to the rest of the system

because the developer realizes that nothing interesting

will happen until the next sample. When the speeds of the

two cars are close execution continues with the next

instruction after "until".

 Now that the PoliceCar has matched the Ferrari’s

speed the FollowingDistance is set to be the distance

between the two.

At this point it is time for the police car to “track”

the Ferrari’s speed. This is done by a separate task named

“PoliceCarTrackFerrari” and contains one statement.

The commanded position of the police car is set to be the

position of the Ferrari minus the position of the Follow-

ing Distance. Until the FollowingDistance virtual axis is

asked to do something its commanded position will be

the value that was last set, the initial following distance

of the police car behind the Ferrari. To continuously

maintain the commanded position of the PoliceCar we

schedule this task to run every controller sample period.

What this scheduled task has provided is a new sample-

rate frequency criteria for the police car commanded

position, effectively a custom profile algorithm.

After waiting for a mile of distance to go by the

police car starts flashing its lights. The flashing of the

lights is managed by another task and continues on its

own at a different frequency. The utility of a virtual axis

is now seen. By asking the FollowingDistance to

MoveTo(LengthOfCar) the FollowingDistance com-

manded position changes from its initial positive value

to LengthOfCar with the well behaved accel and decel of

a trapezoidal move and the police car catches up with the

Ferrari. A trapezoidal profile has been superimposed on

top of electronic gearing criteria to achieve trapezoidal

phase advance with only a few lines of code.

After the police car catches up to the Ferrari the

Ferrari is asked to stop its joy ride and the fun is over.

The procedure to flash the lights simply toggles

the third party industrial control module by assigning a

new value to the card through the IBM PC IO port.

The procedure FerrariJoyRide is an endless loop

of speeding up and slowing down. It would have contin-

ued indefinitely if it had not been aborted.

Architecture Contributions

What architecture attributes contributed towards

solving this problem? The main attributes include:

• Descriptive domain terms language

• High speed application programs

• Multitasking application programs

• Hardware extensibility

7

These attributes are now discussed in detail.

Descriptive Domain Terms Language

Notice that the problem solution is expressed in

the terminology of the problem. The problem is about

Ferraris and Police cars and flashing lights. These differ-

ent objects appear in the expression of the solution. The

freedom to be expressive in both words and structure is

an attribute enabled by the compiler. Many microproces-

sor based motion controllers which execute motion

programs are based on interpreters. Interpreters must

process the symbols of the program every time a pro-

gram statement is executed. Descriptive language and

expressive program structure are counterproductive to

an interpreter since longer symbols require more pro-

cessing time. A compiler incurs the cost of interpreting

verbose symbols once, at compile time, and suffers no

additional run time speed degradation.

The language system supports Pascal like vari-

ables, user defined record types, user defined object

types (record structures with related manipulation rou-

tines), symbol scope, subroutines and functions with

parameters, and type checking. The language system

includes try-recover structured exception handling pro-

viding a powerful technique for managing errors that

occur during application operation. The language also

includes a library of predefined objects such as multi-

axis machines, vectors of various dimensions, and con-

trols that communicate with Windows for plotting and

user interface interaction. Even if the developer chooses

not to use these advanced language features directly

many of the benefits are provided by the Servo Applica-

tion Workbench automatically or in some cases through

dialogs and fill-in-the-form prompts.

High speed Application Programs

This solution used 4 independent tasks, one ex-

ecuting its program body every millisecond. Being able

to write application programs that operate at the control-

ler sample rate is a very powerful developer capability.

Previously achieving customized operations at the sample

rate required specialized firmware in a microprocessor

based controller with associated engineering costs and

lead times. The ability of the 386 PC architecture to

provide high speed operation is attributable to two

things: resultant native 386 object code for the applica-

tion programs and a 33 MHz 32 bit cached computer

with a 32 bit hardware bus.

Conventional microprocessor based motion con-

trollers with interpreters for program execution may take

as much as a millisecond to execute a single statement

because of command interpretation time. Using the 386

PC based architecture it is possible to write application

programs which acquire information from multiple axis

and sensors, process and combine that information, and

create new control directives for multiple axis and other

controlled devices and have that entire program execute

1000 times every second. The solution to the pursuit

problem used an electronic gearing with trapezoidal

phase advance technique however the system does not

have an “electronic gearing with trapezoidal phase ad-

vance mode”. This capability was synthesized as an

application program. The capabilities of this architecture

are not limited by intrinsic “hard coded” controller

capabilities. If a new capability is needed the developer

can write it and achieve similar performance to firmware

based solutions.

Multitasking Application Programs

High program execution speed would not be

useful if the 386 “had its hands tied” during the execution

of such a program. A system which executes quickly but

fails to maintain a communication relationship with the

operator is, from the operator’s point of view, not

running at all. The 386 PC based architecture provides a

multitasking manager which schedules and executes

multiple tasks running at possibly different frequencies.

While application programs are executing at 1 kHz

invocation frequencies the operator is free to move about

Windows, graphing information about motion behavior,

clicking buttons that alter or redirect application behav-

ior, providing parameters in preparation of starting a new

8

activity, and even running other Windows applications

such as a spreadsheet.

Once a task has been scheduled it generally oper-

ates “on its own”, occasionally requesting Windows

services which it cannot perform by itself. This leaves

the developer free to create other tasks for providing

other functions without having the machine tied up

performing the first task. Multitasking can simplify

application development because it allows the developer

to solve and “dismiss” an aspect of the problem from

further concern. For example, once the police car “locked

on” to the Ferrari it was not necessary to be concerned

about that tracking relationship for the rest of the prob-

lem because it was already being managed. Without

multitasking there is a much higher degree of coupling

between different parts of the application because future

sections of code need to constantly keep previous parts

running while they are about the business of doing new

and most likely unrelated activities.

Although Windows is called a “multitasking”

operating environment Windows alone is not suitable

for real time control. Windows is not preemptive mean-

ing that once a Windows application starts executing

other applications do not run until the first application

releases control. The multitasker in the 386 based archi-

tecture adds preemptive scheduling to an otherwise non-

preemptive multitasking environment. Without such a

real time preemptive multitasking extension to Win-

dows the 386 could easily be “distracted” from motion

control activity and leave control matters unattended for

durations of time ranging from milliseconds to minutes

depending on what other Windows applications were

doing.

Hardware Extensibility

The example solution used third party industrial

IBM PC IO hardware. Many advanced microprocessor

based motion controllers are able to communicate to

external hardware through IO buses which are part of the

controller. Unfortunately these buses typically have

non-standard connectors and interface signals requiring

that the developer build custom interface electronics.

The 386 PC based architecture has as its “external

IO bus” the IBM PC’s own IO Expansion Bus which has

become a standard for data acquisition and control add-

on boards. If someone makes a useful sensor most likely

there is some type of IBM PC compatible board that can

read that sensor. In the 386 PC based architecture the

motion system is master of the IBM PC IO expansion

bus rather than a slave as is the case for most micropro-

cessor based control boards. Accordingly most any

board can be accessed by real time motion application

programs providing outstanding hardware extensibility.

Additional Architecture Benefits

Performance Extensibility

There are occasions when the system that has been

built works, but wouldn’t it be great if it had twice the

throughput? Increasing system speed in motion control

applications can be limited by motion controller at-

tributes such as program execution speed rather than by

the speed of the host. If a microprocessor based motion

controller performs one instruction per millisecond in a

4.7 MHz PC it will perform one instruction per millisec-

ond in a 33 MHz 486 because the speed of the motion

controller is completely independent of the speed of the

host. Some motion control manufacturers offer “speed

up” options that allow developers to buy controllers

which operate perhaps 50 to 100% faster than the nomi-

nal product and so help eliminate this bottleneck.

The 386 based motion control architecture, on the

other hand, inherits the speed of the host because the

motion controller is the host. If the project is moved from

a 33 MHz 386 computer to a 33 MHz 486 computer more

than twice the performance is achieved for a small

incremental cost. The price performance ratio of this

architecture improves with time simply because 386

PC’s continue to have improving price performance.

9

Reduction of Communication Delays

Some systems which have the capability of re-

cording real time information such as position time

history must transmit that information to the host where

it can be manipulated and displayed. This requires

transmission time through the communication link con-

necting the controller to the host as well as possible

program command interpretation time if the transmis-

sion is conducted by a motion controller application

program.

When motion application tasks operating with the

386 PC based architecture need to communicate small

amounts of information to control elements in the Servo

Application Workbench they do so through a binary

communication mailbox that SAW responds to. The

motion application program “sends mail” asking for

SAW to provide a service, such as displaying a particular

number in a text control for example.

When it comes time to handle larger amounts of

information such as position time histories, the 386

based architecture does not need to “transmit” informa-

tion to the host. The motion application instead simply

mails a reference to the information and SAW accesses

the same data structure that the motion application filled.

The management of mail and the associated data refer-

ences are handled automatically by the compiler since it

“knows” about these different elements and their in-

tended relationships. The fact that this mechanism is

allowing multiple motion application programs to com-

municate to a Windows operator interface applications is

hidden from the developer.

Various Embodiments Available

The motion application may require operation in

a particularly harsh environment, or require the use of a

touchscreen rather than a mouse. There are many com-

panies that provide 386 PC’s in any form an industrial

application may require. The amount of third party

support directed to applying a computer to varied indus-

trial and interface settings is very large for the IBM PC.

This provides a solution for motion applications with

challenging environmental requirements.

Dynamic Link Library Support

Some developers may elect not to use the Servo

Application Workbench and to instead write Windows

applications with their own preferred development envi-

ronment. The motion system, multitasking system and

compiler of this architecture can be accessed through a

Windows Dynamic Link Library allowing functions to

be used by a conventionally developed Windows appli-

cation. Dynamic link libraries are a powerful feature of

Microsoft Windows which greatly enhance cross-lan-

guage interconnectivity. Windows is receiving a great

deal of attention in terms of development tools, Dynamic

Link Library support and enhancements. Language sys-

tems such as Visual Basic make creating Windows

applications dramatically simpler than 18 months ago.

This resource of tools benefits any developer working

with Windows on the IBM PC.

Cost Effective

IBM PC based solutions are very cost effective

because of the high volume commodity nature of hard-

ware and software components for the PC. For the cost

of a custom 4 line by 40 character LCD display that

interfaces to a proprietary motion control IO bus it is

possible to buy a VGA high resolution color monitor and

display card. For the price of a microprocessor based

motion controller speed upgrade option it is possible to

buy a 386 base system. The cost effectiveness of IBM PC

systems is remarkable and continues to improve.

Summary

Solving an advanced motion control application

requires an advanced language system, multitasking,

user interface support, high speed program execution

and flexible motion capabilities. The benefit of this

architecture is that these various diverse and necessary

components have all been integrated together in a man-

ner that gives the application developer simple access to

10

powerful capabilities for solving the entire system prob-

lem and not just the motion control part of the problem.

Being based on commodity computing hardware and

software components the architecture allows the cre-

ation of extensible, higher performance systems for less

money than is possible through conventional micropro-

cessor based controller architectures.

References

1) L. Fischer, R. LeBlanc, Crafting A Compiler,

Benjamin Cummings Publishing Company, Inc.,

Menlo Park,California, 1988.

2) Intel Corporation, i486 Microprocessor

Programmer's Reference Manual, Osborne

McGraw-Hill Book Company, New York, 1990

3) E. Solari, AT Bus Design, AnnaBooks, San

Diego, California, 1990

4) W. Brogan, Modern Control Theory, Prentice

Hall, Englewood, New Jersey, 1991

5) G. Franklin, J. Powell, Digital Control of

Dynamic Systems, Reading, Massachusetts, 1981

About the Author

J. Randolph Andrews received his B.S. M.E. in

1981, B.S. E.E. in 1981 and M.S.M.E. in 1983

from the Massachusetts Institute of Technology.

He participated in the MIT Mechanical

Engineering Department's DeFlorez Design

Competition each undergraduate year winning

1st place '78, 1st place '79, 1st place '80 and 1st

and 2nd place '81.

Andrews spent 4 years at Hewlett Packard's

corporate research laboratory in the Applied

Physics Research Center as well as the

Manufacturing Research Center.

The following 4 year period was spent with Galil

Motion Control.

In July '91 Andrews founded Douloi Automation

to provide motion control hardware and software

components primarily for use with Microsoft

Windows.

Professional interests include motion control,

software/electrical/mechanical system design

trade-offs and high abstraction programming

techniques and tools.

