
1

Douloi Automation, Inc.
3517 Ryder Street
Santa Clara, CA 95051-0714

Voice (408) 735-6942
Fax (408) 735-6946
EMail support@douloi.com

Instruction Manual for
Motion Server &
Servo Application Workbench

March, 1999

Copyright © 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999
Douloi Automation, Inc.
All Rights Reserved

2

3

Table of Contents

1) Introduction... 13

Welcome! .. 13
Objective of Document .. 14
Motion Server Specifications .. 14

Motion System .. 14
Servo Capabilities .. 15
Stepper Capabilities .. 15
Timer Event .. 15
Multiple Motion Application Threads ... 16
Microsoft Windows '95 and Windows NT .. 16
Long-Slot ISA Format .. 16
Servo Application Workbench ... 16

Methods Of Use ... 18
Servo Application Workbench ... 18
32-bit Dynamic Link Library .. 18
ASCII Commands ... 18
Binary Commands .. 18

2) Setting Up the System.. 19

Purpose ... 19
System Requirements ... 19
Software Installation .. 19

Servo Application Workbench Installation .. 19
Think & Do Installation ... 20
Visual C++ and Visual Basic ... 20
Example Setup Procedure ... 20

Hardware Installation .. 23
External Connections .. 23

Servo Motor Setup ... 24
Hooking up the Encoder ... 24
Confirming Proper Encoder Operation .. 24
Connecting Motion Server to Servo Power Amplifiers ... 25
Confirming Proper Amplifier Operation ... 26
Tuning the System ... 27

Starting the Test ... 28
Interpretation.. 28
Avoid Saturation ... 28
Tuning Guidelines ... 29
Achieving 0 Steady State Error ... 29

Stepper Motor Setup .. 30

4

3) Introduction to Motion .. 31

Purpose ... 31
Preliminary Motion .. 31
Command Structure .. 32
Single Axis Modes of Motion .. 34
Dynamic Profiling .. 38
Multiple Axis Modes of Motion .. 40

4) Servo Application Workbench Tutorial ... 43

Introduction to SAW .. 43

Lesson 1- Running a Minimum SAW Application .. 45
Objective .. 45
Start SAW ... 45
Run the Default Application .. 46
Modify the Default Application.. 47
 Summary ... 48

Lesson 2 - Creating a Button ... 49
 Objective ... 49
Create a Button .. 49
Modify a Button Appearance .. 50
Modify a Button Behavior ... 50
 Summary ... 52

Lesson 3 - Creating Text .. 53
Objective .. 53
Create a Text Item... 53
Change Text Interactively ... 54
Change Text with a Program.. 55
Questions and Answers ... 57
Summary .. 57

Lesson 4 - Using Plates ... 59
Objective .. 59
Change a Plate Title .. 59
Change a Plate Appearance .. 60
Create a Plate Variable .. 61
Change a Plate Variable .. 62
Change a Plate Event Procedure.. 64
Create a Plate User Procedure .. 65
Summary .. 65

Lesson 5 - Using Bump Graphics .. 67
Objective .. 67
Turn on the Grid ... 67
Create a Bump ... 67
Modify a Bump... 68
Place a Dip on Top of a Bump .. 68
Reorder Graphics .. 69
Summary .. 70

5

Lesson 6 - Calculator Project .. 71
Objective .. 71
Create Calculator Faceplate ... 71
Create Calculator Number Keys ... 72
Create Procedure PushNumber ... 73
Create Calculator Operation Keys .. 75
Create Equals Key ... 77
Create Clear Key ... 77
Test the Calculator .. 78
Summary .. 78

Lesson 7 - Using Plate Drag Methods .. 79
Objective .. 79
Create a Display ... 79
Edit the BeginDrag Method ... 80
Edit the Drag Method ... 80
Edit the EndDrag Method.. 81
Summary .. 81

Lesson 8 - Using Bitmap Graphics .. 83
Objective .. 83
Select the Bitmap Filename ... 83
Crop Bitmap ... 83
Position Bitmap ... 83
Summary .. 84

Lesson 9 - Using Geometric Graphics ... 85
Objective .. 85
Drawing a Line ... 85
Drawing a Rectangle ... 86
Drawing a Rounded Corner Rectangle .. 86
Creating an Ellipse ... 86
Drawing Closed Polygons .. 87
Drawing Open Polygons .. 87
Summary .. 88

Lesson 10 - Using Attached Subplates ... 89
Objective .. 89
Creating a subplate ... 89
Summary .. 92

Lesson 11 - Using Pop-Up Subplates ... 93
Objective .. 93
Creating a pop-up subplate ... 93
Summary .. 95

Lesson 12 - Using Merged Subplates ... 97
Objective .. 97
Creating a Merged Subplate .. 97
Adding Graphics to Plates .. 98
Comparing with Attached Plate ... 98
Summary .. 99

6

Application Sketches .. 101

Purpose ... 101

Simple X Axis Storage Scope ... 103
Description ... 103
How It Works ... 103

Dragging and Dropping a Square.. 105
Description ... 105
How It Works ... 105
Questions and Answers ... 108
Technique Applications ... 108

Mouse Indicated Selection ... 109
Description ... 109
How It Works ... 109

Passing Object Parameters .. 113
Description ... 113
How It Works ... 113
Questions and Answers ... 114

6) The Douloi Pascal Language .. 115

Introduction to the Language System .. 115
Purpose .. 115
Language Overview .. 115
Formats and Conventions .. 118

Variables .. 121
Purpose .. 121
Fundamental Types ... 121

Boolean.. 121
Integer .. 121
Longint ... 122
String .. 122
Single Precision IEEE Floating Point Reals ... 122
Double Precision IEEE Floating Point Reals ... 122

Usage ... 123
Aggregate Types .. 123
Arrays ... 126

Assignment .. 129
Purpose .. 129
Assignment of Simple Types ... 129
Assignment of Aggregate Types ... 130

Constants ... 133
Purpose .. 133
Description ... 133

7

Operators .. 135
Purpose .. 135
Operators for simple types ... 135
Operators for aggregate types .. 137

Procedures and Functions .. 139
Purpose .. 139
Procedures ... 139
Functions .. 142
Call-By-Value and Call-By-Reference ... 143

Control Structures .. 145
Purpose .. 145
Control Structure Principles ... 145
�If� Construct ... 146
�If-Else� Construct ... 147
�For� Loop ... 148
�While� Loop ... 150
�Repeat� Loop.. 152
�Try..Recover� ... 153

User Defined Types .. 161
Purpose .. 161
User Defined Record Types ... 161
User Defined Object Types .. 163

Using the Math Coprocessor .. 165
Purpose .. 165
Calculator Model .. 165
Calculation Procedures and Functions ... 166
Math Coprocessor Examples .. 167

Adding Two Numbers .. 167
Calculating The Sin of a Number ... 168

Multitasking System ... 169
Purpose .. 169
Multitasking Model ... 169

Position Maintenance .. 170
Motor Control Laws .. 170
Profile Management .. 170
Conventional Tasks ... 170
Last Task ... 170

Cooperative Multitasking ... 171
Windows Mail .. 171

Multitasker Commands ... 174
Techniques ... 174

�Saturating� limit switch routine. .. 174
Task synchronization ... 175

Synchronization Approach 1, Shared Variables .. 175
Synchronization Approach 2, Task Status ... 176
Synchronization Approach 3, Don�t multitask .. 177

8

Program Formatting ... 179
Purpose .. 179
Principles .. 179
Summary .. 182

Gotchas ... 183
Purpose .. 183
Statements Apparently Fail to Execute .. 183
Unexpected Escape During File Reads ... 184
Information Being Collected Does Not Change .. 185
Program Locks While Waiting for Motion To Finish .. 186
Incorrect Branching When Using Masked Inputs .. 186
Subplate Does Not Appear When Application Starts .. 187
Drawn Lines Do Not Appear On Plate 1 ... 187
Drawn Lines Do Not Appear On Plate 2 ... 188
Runtime Error 104 .. 188
Nothing Happens When a DLL Call Is Made ... 189

7) Predefined Types .. 191

Purpose ... 191
Reading and Writing Conventions .. 191

TNVector ... 193
Description ... 193
Fields .. 193
Methods ... 194
Examples .. 194

TFile (SAW only) .. 195
Description ... 195
Methods ... 195
Examples .. 196

TPrompter (SAW only) ... 199
Description ... 199
Methods ... 199
Examples .. 199

8) Advanced Motion Capabilities ... 201

Purpose ... 201

Electronic Gearing.. 203
Description ... 203
Fundamental Principles ... 203
Implementation .. 204
Limitations .. 205

Electronic Gearing with Trapezoidal Phase Advance ... 207
Description ... 207
Fundamental Principles ... 207
Implementation .. 208

9

Electronic Cam .. 211
Description ... 211
Fundamental Principles ... 211
Implementation .. 211
Limitations .. 216

Tangent or "Knife Cutter" Servoing .. 217
Description ... 217
Fundamental Principles ... 217
Implementation .. 217
Limitations .. 220

Bi-directional Force Reflection ... 221
Description ... 221
Fundamental Principles ... 221
Implementation .. 222
Limitations .. 223

Using the ServoLib Dynamic Link Library .. 225

Purpose ... 225
Functionality through Douloi Pascal .. 225
Functionality through Direct Calls ... 225
Usage .. 226

Turbo Pascal for Windows DLL Examples ... 229
TPW Example 1 - Direct Access ... 229

Description ... 229
Source Code... 229
Explanation... 230

TPW Example 2 - Direct Access ... 231
Description ... 231
Source Code... 231
Explanation... 232

TPW Example 3 - Combined Access .. 233
Description ... 233
Douloi Pascal Source Code ... 233
Source Code... 233
Explanation... 234

Turbo C++ for Windows DLL Examples .. 237
C++ Example 1 - Direct Access .. 237

Description ... 237
Source Code... 237
Explanation... 239

C++ Example 2 - Direct Access .. 240
Description ... 240
Source Code... 240
Explanation... 241

10

C++ Example 3 - Combined Access ... 243
Description ... 243
Douloi Pascal Source Code ... 243
Source Code... 243
Explanation... 245

Visual Basic DLL Examples ... 247
Visual Basic Example 1 - Direct Access ... 247

Description ... 247
Source Code... 247
Explanation... 248

Visual Basic Example 2 - Direct Access ... 249
Description ... 249
Source Code... 249
Explanation... 249

Visual Basic Example 3 - Combined Access .. 251
Description ... 251
Douloi Pascal Source Code ... 251
Source Code... 251
Explanation... 252

SAW Implementation of DLL Examples .. 253
SAW Implementation of Example 1 ... 253

Description ... 253
Source Code... 253
Explanation... 254

SAW Implementation of Example 2 ... 255
Description ... 255
Source Code... 255
Explanation... 255

Saw Implementation of Example 3 .. 256
Description ... 256
Source Code... 256
Explanation... 257

10) System Design Issues .. 259

Safety .. 259
Purpose .. 259
Limitations of Application .. 259
Responsibility .. 259
Built-In Safety Features .. 260
Limit Switches ... 261
Emergency Stop Considerations ... 261

Initialization ... 263
Purpose .. 263
Traditional Homing Strategy .. 263

11

11) Command Summary ... 265

Purpose ... 265
Primitive Data Types .. 265
TNVector Objects - Multidimensional Vectors with N ranging from 2 to 6 265
Math Coprocessor Operations (Douloi Pascal only) .. 265
Multitasking ... 266
IO Operations .. 266
Safety .. 266
Numeric .. 267
Exception Handling .. 267
TPlate Objects - Assembly Foundations/Drawing Surfaces (SAW only) 267
TStatic Object - Static Text/Display Object (SAW only) .. 267
TEditor Object - Single Line Text Editor (SAW only) .. 268
TListBox Object - List Box Text Selection Object (SAW only) ... 268
TFile Object - DOS File Access Object (SAW only) .. 268
THPGLFile Object (SAW only) .. 268
TPrompter Object - Message Box Object (SAW only) .. 268
TNAxis Object - Multi-Axis Motion Object .. 268
Escape Code Constants .. 270
Mathematical Constants ... 271
Boolean Constants ... 271
Torque Descriptions ... 271
Pen line styles ... 271
Pen colors .. 271
HPGL Command Constants ... 271

12) Cables and Connectors .. 273

Description .. 273
Axis Group Connectors ... 273
I/O Connector .. 273
E-Stop Connector ... 273
External Bus Connector ... 273

Axis Signal Descriptions .. 274
Encoder A+, A-, B+, B-, I+, I- ... 274

Functional Description .. 274
Electrical Description ... 274

Amp Enable High, Amp Enable Low .. 275
Functional Description .. 275
Electrical Description ... 275

Position Capture ... 275
Functional Description .. 275
Electrical Description ... 275

Position Compare ... 276
Functional Description .. 276
Electrical Description ... 276

Motor Command.. 276
Functional Description .. 276

12

Electrical Description ... 276
Step Pulse, Direction ... 276

Functional Description .. 276
Electrical Description ... 277

+5 Volts, Ground ... 277
Description ... 277

Pin Numbering Conventions .. 277
Axis Group Connector Definitions, 2-Row IDC ... 278
Axis Group Connector Definitions, D-Style ... 280
I/O Connector Definition ... 281
EStop Connector Definition.. 282
External Bus Connector .. 283

Index .. 285

13

1Chapter

1) Introduction

Welcome!
Welcome to Motion Server and Servo Application Workbench, tools to
simplify and accelerate the creation of motion control applications.

Douloi Automation wants to encourage your project's success. Free techni-
cal support is available to answer your questions, assist you through
trouble-spots in product use, and to recommend strategies and approaches
for solving different aspects of a motion control problem. Sample code,
application prototypes, and application notes can be provided to response to
specific questions you may have. We would much rather have you call and
get answers than to be frustrated or slowed in your automation project.
Please feel free to contact us at:

� voice (408) 735-6942
� fax (408) 735-6946

� EMail support@douloi.com

Motion Server is a hardware component that can communicate through
several methods. The easiest environment to use Motion Server is
Microsoft Windows. In Windows, users can describe real-time activities
that execute on the Motion Server card independent of the host processor.
These behaviors can then be retained in Motion Server for use in other
operating systems. Motion Server can be used with any Windows language
system which communicates to Windows Dynamic Link Libraries (DLLs)
such as Visual Basic or Turbo Pascal for Windows. Servo Application
Workbench is a particular language system which greatly simplifies the use
of Motion Server by providing convenient access to the functionality of
Motion Server as well as providing components for creating control panels
for servo or stepper motor controlled machines. After creating a motion
control application with SAW, the system can be configured to start the
application independently, from the Program Manager or
AUTOEXEC.BAT file as if the application was a conventional Windows
application.

14

User Manual for Motion Server and SAW

Objective of Document
The purpose of this document is to provide information in the order you
will need it in the course of setting up and using a system. Specific details
on features are found in the SAW on-line help reference manual accessed
through the Help menu selection in SAW or the Help icon in the Servo
program group. The on-line help serves as the Reference Manual for the
system. This document serves as the User Manual. Information can be
found by either following information paths from the index or searching
by keyword or topic.

The primary method of explaining Motion Server and SAW is through
interactive tutorials and application "sketches" which illustrate how differ-
ent system features are used. A section is included illustrating how to access
Motion Server from other language systems such as Visual Basic and Visual
C++.

Motion Server Specifications

Motion System

� 486 DX5 128 MHz 32 bit processor
� 4, 8, 12, or 16 axes per system

� Servo or Stepper on per-axis basis
� Multiple independent coordinated axis groups

� Trapezoidal and S-Curve profiling
� Custom profiling at application level

� 32 bit position management
� Sample rates from 1 to 4 kHz

� Linear, circular, curve interpolation
� Electronic gearing with phase adjust

� Electronic camming
� Tangent servo

� Master/slave coordination
� High speed registration

� Kinematics
� Motion superposition

� Coordination tailoring
� On-board real-time operating system supporting 12 seperate activi-

ties as well as motion control
� 48 general purpose configurable I/O

15

1Introduction

� 1 Capture signal per axis
� User Disable signal

� 2 amp enable signals per axis, one active high, the other active low
� watchdog safety system

Servo Capabilities

When configured to run a servo motor the hardware provides:

� 4 MHz quadrature inputs with 3 bit filters for 4 axis, 1 MHz quadra-
ture rate for 16 axis

� high speed position capture
� high speed position compare

� +/- 10 volt command signal with 12 bit resolution

Stepper Capabilities

When configured to run a stepper motor the hardware provides:

� 2 Mhz step rate for 4 axis, 500 kHz step rate for 16 axis
� configurable step pulse polarity

Timer Event

Motion Server provides motion control functions by responding to a timer
which occurs generally at 1 kHz although the frequency is programmable.
This times event performs three major functions.

The first function is control law execution. Servo control is accomplished
with the familiar zero, pole, integrator filter used in many motion control
systems. This PID control law operates at a 1 kHz sample rate providing
comfortable closed loop system frequencies of 100 Hz and below. Stepper
motor control is accomplished by updating pulse generating electronics at a
frequency of of 1 kHz providing continuous velocity control of stepper
motors. The second function of the timer event is motion profiling.
Motion Server is able to profile motion for up to 16 physical axes. These
axes can be combined in different arrangements to form various coordi-
nated multi-axis groups. Any particular axis group can perform coordinated
motion along an arbitrary path. Multiple axis groups can perform motion
concurrently and independently. The motion profiler uses a dynamic
profiling technique which permits changing profile parameters on the fly
including acceleration, deceleration, slew speed, and in some cases destina-
tion and motion type. This permits motion mode "splicing" without
stopping. For example a positioning move can be changed to a jog at a new
speed on the fly.

16

User Manual for Motion Server and SAW

The third timer event function is multitasking. Multiple user-written
motion application programs can be resident in Motion Server. The timer
event contains a multitasker which activates and manages the operation of
these programs.

Multiple Motion Application Threads

As many as 12 separate motion application "threads" or programs (which
are distinct from motion profiles) can be running concurrently and inde-
pendently at any particular time. These programs are written in Douloi
Pascal, a dialect of Object Pascal. Programs can communicate to each other
through shared data structures. They can access the motion control system,
communicate to auxillary analog input and serial port I/O boards attached
to Motion Server, communicate with Windows applications created by the
Servo Application Workbench, and to the disk file system if SAW is present.

Microsoft Windows '95 and Windows NT

Microsoft Windows serves as the most common development and target
environment for motion control applications using Douloi products. The
familiar interface aids both developers and users of the resulting applica-
tions reducing the developers learning curve and the operators training
time. Motion Server can be used with other operating systems through
various communication methods available.

Long-Slot ISA Format

Motion Server occupies a single ISA "long" slot. The end of the Motion
Server card furthest from the mounting bracket holds the on-board 486
processor. The heat sink and fan assembly protrudes from the board
further than the board-to-board spacing preventing the placement of
another long-slot card immediately in front of Motion Server, however
shorter cards can fit if necessary. Host performance does not effect Motion
Server's real-time performance, however some operations are performed by
the host on behalf of Motion Server when Motion Server sends "mail"
requesting that these operations are done on its behalf. Performance of
these "non-real-time" operations is enhanced with a faster host.

Servo Application Workbench

Servo Application Workbench (SAW) is a Windows application which
greatly simplifies the creation of multithreading motion application pro-
grams and operator control elements to direct them. Applications may

17

1Introduction

contain conventional Windows controls such as buttons and text items as
well as more specialized controls such as components available in the
software catalog browser.

Inside Servo Application Workbench is a high level language compiler. The
compiler changes the descriptions of the motion applications into native 32
bit 486 object code which executes on Motion Server very quickly. The
compiler �knows� about the motion system, the multithreading system,
and Windows. This permits the application developer to access different
system resources in a consistent way without having to worry about how
these resources are being provided.

Servo Application Workbench allows the developer to construct motion
applications in a �clip art� fashion by pasting pre-fabricated parts and
assemblies into the application. After �screen painting� the application and
filling in the program�s behavior Servo Application Workbench compiles
the motion application programs and creates the associated Windows
application to operate them. This ability to create new real-time behavior
and download into Motion Server is constrained to the Windows environ-
ment because the language compiler is a Windows DLL. However, new
motion controller capabilities (beyond the standard command set) can be
created in SAW, downloaded into Motion Server, and remembered in
"flash" memory for use under another operating system.

18

User Manual for Motion Server and Servo Application Workbench

Methods Of Use
Motion Server can be used in a number of ways. Certain capabilities are
available only in certain development methods. The following sections
describe resources available.

Servo Application Workbench

Servo Application Workbench is the easiest method for development of
real-time machine behavior. This behavior can be "downloaded" into the
controller and invoked from a control panel also written in SAW, from
other Windows programs, or from binary or ASCII commands.

32-bit Dynamic Link Library

Dynamic Link Libaries are a common and simple method of adding
features to any Windows language system. A dynamic link library provides
procedures and functions to control the Motion Server hardware. The
dynamic link library uses Binary Commands which are described in detail
in the Binary Command Manual.

ASCII Commands

ASCII commands provide a simple method of accessing the basic functions
of Motion Server including single axis and multiple axis coordinated
motion and I/O. Characters are sent through an RS-232 port on an acces-
sory card which connects to Motion Server.

Binary Commands

Binary Commands provide low-level "register" access to Motion Server
without requiring that position information and command parameters be
converted into an ASCII format. Binary Commands are constructed by the
32 bit Dynamic Link Library or can be constructed directly with register
reads and writes for use with non-Windows operating systems.

19

2Chapter

2) Setting Up the System

Purpose
The first step in preparing to use Motion Server and the Servo Application
Workbench is configuring and installing the software and hardware. A
procedure for hooking up Motion Server to other motion elements is
provided along with checks to insure the integrity of your work.

If at any point during the setup process you have a question please feel free
to call Douloi Automation for advice on how to best proceed.

System Requirements
Servo Application Workbench requires an IBM or compatible PC ("Wintel"
computer) running Microsoft Windows version 3.1, 3.11 (Windows for
Workgroups) or Windows '95. Also required is a VGA monitor, 8 mega-
bytes of memory, mouse, 2 megabytes of available hard disk space.

This document presumes that you are familiar with Microsoft Windows.
Pascal familiarity is helpful but not necessary.

Software Installation
Software needed to use Motion Server and SAW may be installed in your
system by running double clicking the SETUP.HTM file in the root
directory of the CD-ROM. Instructions specific to particular browsers are
described in this file.

Servo Application Workbench Installation

If you've licensed Servo Application Workbench install the SAW Full
Development Environment. If you have not licensed SAW, Douloi Auto-
mation recommends that you install the SAW Run-Time Edition. This
provides access to diagnostic software and allows Douloi Automation to
guide you through diagnostic procedures if required. The Run-Time
Edition allows you to load SAW applications but not to save any of your
work. Make sure you choose the appropriate operating system.

20

User Manual for Motion Server and Servo Application Workbench

Think & Do Installation

If you are using Think & Do Software, install the Binary Command
Interpreter under the Windows NT section. Think & Do communicates to
Motion Server through binary commands. Details of binary commands are
explained in the Binary Command Manual.

Visual C++ and Visual Basic

If you are using Visual C++ or Visual Basic you should install the Binary
Command Interpreter for the operating system you intend to use. Details
of binary commands are explained in the Binary Command Manual.

Example Setup Procedure

After choosing a particular setup option a setup procedure similar to the
following will appear. Different selections have difference dialogs however
this is representative.

An installation screen will appear. You will be shown the following intro-
ductory dialog:

2Setting Up the System

21

Select the "Next" button to continue.

The next decision is where should the software be placed. The following
dialog suggests c:\Douloi\SAW as the default directory:

22

User Manual for Motion Server and Servo Application Workbench

A default program folder named SAW is offered:

After files are installed onto the hard disk the following dialog concludes
the installation:

2Setting Up the System

23

Hardware Installation
Detailed descriptions of each Motion Server connector and signal are
found in the "Connectors" chapter towards the end of the manual. Differ-
ent amplifier vendors choose different names for signal functions. If you
have any confusion regarding how to hook up Motion Server to your servo
amp, stepper drive, or IO module please contact Douloi Automation for
advise. Faxing a data sheet of the signals definition for the device in ques-
tion helps us best help you.

The introduction of any new piece of hardware in a PC has the possibility
of causing hardware problems. Before installing Motion Server perform a
complete backup of your computer. If you are unfamiliar with backing up
your system contact Douloi Automation for a recommendation. The value
of your work can easily be lost by a hard disk failure or hardware conflict.
Safeguard you work by having a consistent pattern of backups After back-
ing up your system install the hardware into your PC.

External Connections

Connections from Motion Server to other parts of the system can be made
with IDC to terminal breakout modules, or by using D-style IDC connec-
tors on the split-apart axis cables creating identical axis connectors.

During initial setup it is most desirable to work with a motor system which
is not attached to a machine, or if attached has the freedom to spin without
encountering limits. It is not a significant problem if this is not the case
however additional care should be exercised when setting up a limited-
motion system.

External connections will be made �incrementally�, checking out the
correctness of the connections as you move along. An example will be
walked through for a single axis. Repeat the following procedure for each
axis in the system.

24

User Manual for Motion Server and Servo Application Workbench

Servo Motor Setup

Hooking up the Encoder

Motion Server expects to interpret quadrature encoders. A +5 voltage is
provided on the axis encoder connector to power the encoder. If you have a
+12 volt encoder the signals can be properly interpreted however you�ll
need to supply the encoder power from an alternate location such as a disk-
drive connector plug.

The encoder may be two channel or three channel, single ended or differ-
ential. The type, if not explicitly known, can be inferred from the types of
signals being returned. Channels are typically labeled A and B for the main
quadrature information, and I for the index pulse, a once-per-revolution
signal useful for initialization or position integrity checks. If the encoder
has differential outputs there should be corresponding /A, /B, and /I signals,
one complement signal for each line. If your encoder does not have
differential outputs simply leave the differential inputs disconnected.
An internal voltage reference provides a suitable level for these lines
in the absence of an external signal. Do not ground the /A, /B, or /I
inputs. Ground is not a suitable voltage reference and may cause the
encoder to appear to not work.

Confirming Proper Encoder Operation

Regardless of whether or not Servo Application Workbench has been
purchased for development, a run time version has been provided to run
some installation instruments to assist you in the course of setting up your
system.

Start Windows and double click on the Check Encoder icon in the SERVO
group. The icon looks like this:

After a few moments a position display instrument should appear indicat-
ing the position of the encoders. Rotate the motor and note the change in
the position display window for that axis. Press the �reset� button to zero
the current position and arm the index capture. Rotating the motor should

2Setting Up the System

25

cause a position change, and if rotated at least one rev, should also indicate
that the index pulse was detected by changing the "Armed" status to
"Tripped" (assuming you have a three channel encoder).

Repeat this encoder installation procedure for each axis in your system.
After checking the encoders close the application by double clicking on the
system menu.

Connecting Motion Server to Servo Power Amplifiers

Motion Server takes position information from the encoders and in combi-
nation with directives from the application program creates a motor com-
mand which is a request to the power system for a certain amount of motor
torque. This motor command is expressed as an analog voltage in the range
+10 volts to -10 volts, plus voltage indicating a request for positive torque
and negative voltage indicating a request for negative torque. This is a
common torque request format for many amplifier suppliers. Connect the
motor command signal to the torque command input of the amplifier. If
the amplifier input takes a differential pair then use the Motor Command
signal for the "plus" side of the differential receiver on the amp and a
ground wire for the "minus" side. Use a twisted pair for these two motor
command and ground signals.

Modern amplifiers are quite versatile and often have a number of different
operating modes. For use with Motion Server the desired mode is most
likely called by one of the following names in the amplifier documentation:

Torque Control
Current Control

Transconductance Mode
Position Control Configuration

The objective of the mode is to provide a motor current proportional to the
analog input voltage. It is important to disable any �integration� feature of
the amplifier. These are most often encountered with amplifiers designed
to directly support PI control internally. Motion Server provides PID
control but will conflict with any other agents attempting to do the same.

Often the default gain of an amplifier, i.e. amps output/volts input, is quite
high. The most useful amplifier gain setting is provided by setting the
amplifier to produce its maximum positive desired output at +10 volts, and
the maximum negative desired output at -10 volts. This gives Motion
Server the maximum possible numeric range for working with your
amplifier system. Consult amplifier documentation for gain values and the
possible need to adjust the amplifier gain. Note that adjusting the amplifier
gain on a live system may result in sudden unexpected movement. Gain

26

User Manual for Motion Server and Servo Application Workbench

settings are best adjusted on the bench with an inductive load rather than
the actual motion system. Consult your amplifier documentation and
vendor for information.

The safety of the system will be enhanced by using the amplifier enable
outputs from Motion Server if the amplifiers you are using have amplifier
enable inputs. Amplifier enable is a signal used to instruct the amplifier
when it should interpret the analog signal. If the amplifier enable line is not
active, the amplifier disregards the analog signal. This provides Motion
Server with two different ways of requesting 0 amplifier power, through
expressing 0 voltage to the analog input and by disabling the amplifier. If
the amplifier has an amplifier enable input Douloi Automation recom-
mends using it to improve the safety of your system. Use of the amplifier
enable signals is particularly important if the host computer power can be
turned off while the amplifier power remains on as the analog command
voltages can drift during the shutdown of the computer power supplies. If
you have a choice, it is much better to choose amplifiers which default "off"
without being deliberatly turned on by the controller, rather than amplifi-
ers which are active by default.

Confirming Proper Amplifier Operation

Double click the Check Amps icon. The Check Amps icon looks like:

This instrument is useful for checking the basic stability of the servo
system. The main concern at this point is whether the motor wires are
hooked up correctly or are backwards. In a closed loop servo system the
commands sent to the motor direct the motor towards a desired goal
reducing an error and converging towards the goal. If wiring in the system
is backwards the motor will be directed away from the desired goal increas-
ing error and diverging. "Check Amps" identifies which of these two cases
is currently configured. Select the axis to test with the �Select Axis� button
and perform the test with the �Perform Test� button.

Things can get �backwards� in many different places in a closed loop servo
system and it is generally easier simply to measure what you have rather
than try to determine ahead of time what you have. If "Check Amps"
determines that something is backwards you have several options on what
to change. Inverting the A and B channels of the encoder can solve the

2Setting Up the System

27

problem, however this can be inconvenient to do if you are using plug in
cables and modules. It is not a good idea to swap wires inside an encoder
cable since this makes the cable �special� in a somewhat invisible way and
replacing the cable with a straight through cable can cause the system to
�mysteriously fail� if that swapped wire cable is not carefully marked. The
most suitable place to switch things is to invert the motor wires on the
motor. Do not attempt to invert the plus and minus voltages on the ampli-
fier. In a closed loop system the �positive� direction is established by the
encoder, not by the motor leads so there is no penalty for reversing the
motor leads.

It is also possible to �reverse� Motion Server in software using the
SetLoopInversion command. However it is better to solve the problem
through a wiring change. If the system setup is somehow lost the system
will default to no loop inversion. It is better for the hardware system to
instrinsicaly be stable rather than having to �help� the system be stable with
a software configuration.

Tuning the System

In order for your servo system to operate at its full potential the servo
system needs to be �tuned�. This adjustment process is performed with the
SAW Application TUNEAXIS.SAW which implements the classic step
response test. The Tune Axis icon is a tuning fork and looks like this:

28

User Manual for Motion Server and Servo Application Workbench

Double click on the Tune Axis icon to start this utility. You should see a
screen similar to the following:

The motor is instructed to �step� back and forth a small displacement
�instantly� in the TUNEAXIS application. How well the motor is able to
perform this sudden step is a measure of its performance. No physical
system can exactly track a step change in displacement. Typical responses
show the motor moving towards the desired step position, �overshooting�
the goal and returning to the desired point.

Starting the Test
Select the axis you would like to tune by pushing the "Select Axis" button.
Start the stepping motion by pushing the "Start Step" button. then push the
"Trigger" button to trigger the storage scope and collect information

Interpretation
The red line indicates the commanded or theoretical step being requested.
The black line indicates the actual response which is being performed by
the motor. The green line indicates the torque being requested of the
motor during the step. The period of the step, displacement, and compen-
sation parameters can be changed by altering the numbers in the appropri-
ate box and pushing the �set� button.

Avoid Saturation
When using the step response test it is important to not �saturate� any of
the system elements. Digital control, as well as linear control, requires
�room to move the elbows�. If the calculations or implementation of the
control system encounters boundaries the effectiveness of the system will
be at least reduced and perhaps, in extreme situations, unstable. The green

2Setting Up the System

29

line indicating commanded torque is an example of this. The red lines on
the commanded torque plot indicate the limits of the torque�s expression. If
the green line �pegs� into the red lines for extended periods then the system
is saturating. The controller would really like to ask for more torque
however it can�t request more torque with the implementation it has. This
type of saturation confuses the controller which presumes that the system
is not encountering such boundaries.

Tuning Guidelines
The ability of the motor to track the step can be improved by adjusting the
compensation, that is, the gain, zero, and integrator terms of the control
law. Initially it is best to leave the integrator at 0 and study the behavior of
the system in light of just the zero and gain. These two parameters are the
main influences on the system�s dynamic response. Generally a zero value
of 232 or so is useful. Increase the gain value, pushing the �set� button after
each new value, and observe the effects on the step response plot. The
motor will most likely sound �snappier� as it more closely follows the step
with higher gains. However there will come a point where the gain be-
comes excessive and the motor may audible or visually begin to vibrate.
This can usually be seen on the plots as an oscillation well above the step
frequency. At this point you can increase the zero (which limits at 255) or
more likely reduce the gain to move below this vibrating instability.

Achieving 0 Steady State Error
At this point you can include the integrator to reduce steady state error.
Start with a value of 1 and increase by 1. The initial effect will appear small,
however the steady state value will more accurately converge on the desired
value. As the integrator value is increased the motor will more quickly
converge to the desired value. However, as the integrator gets too large in
value, another instability is likely to occur causing the system to again
oscillate. In this case �back off� the integrator to a lower value to restore the
benefits of zero steady state error with stable behavior. In general the
integrator value should not be greater than 1/4 of the gain value.

Record the values of gain, zero, and integrator for each axis. These values
characterize your system and will be helpful when constructing applica-
tions to return the system to this current compensation.

At this point you should be ready for some preliminary servo controlled
movement.

30

User Manual for Motion Server and Servo Application Workbench

Stepper Motor Setup
Stepper motor drives are connected to signals on the axis-group connec-
tors. Stepper motors and servo motors user the same amplifier enable
signals. Stepper motors user the step and direction signals. Often stepper
motors use opto-isolators on their inputs. The step, direction, and enable
signals are all open collector signals.

Subsequent sections will describe preliminary motor movement. If the
motor turns the wrong way you can SetCoordinateInversion command to
cause movement in the opposite direction.

31

3Chapter

3) Introduction to Motion

Purpose
This section will review the different motion capabilities of Motion Server.
In the course of describing motion capabilities some groundwork for the
language system will be made in preparation for describing motion control
applications.

This document describes motion related commands from an overview
vantage point. Details of commands outlined here are found in the on-line
help which can be invoked from the Help menu item under SAW or from
the Help icon in the Servo group directly.

Preliminary Motion
From the SAW menu of select Run\Interpreter. A dialog should appear.
This interpreter can be used to submit individual commands to the control
system. The command interpreter looks like the following picture:

32

User Manual for Motion Server and Servo Application Workbench

Click inside the command line and type the command:

XAxis.SetMotor(On);

After typing in the command click the �do it� button. The dialog box
should appear as shown below:

If you configured the XAxis to be a servo motor, the motor should now be
displaying stable servo behavior by resisting any applied torques. If the
motor is a stepper motor, the amplifier should be enabled and the stepper
motor holding position.

Now type the following command:

XAxis.MoveBy(20000);

After typing in the command click the �do it� button. The X axis motor
should move to a point 20000 counts away, about 10 turns for a typical 500
cycle/rev encoder. To bring the motor back do the command:

XAxis.MoveBy(-20000)

Command Structure
Motion Server commands follow an �object oriented� structure which has
become popular with languages such as Object Pascal, C++, and Visual
Basic. The basic structure of a command is:

<receiver>.<method>(parameters);

The <receiver> part of the command is filled in with the name of an
�object� in the language system. In the example the object name was XAxis

33

3Introduction to the Motion System

and referred to the first motor controlled by the system. Objects include
items such as a particular axis, a group of axis, a control plate, or a control
element such as an editor. In general objects contain some sort of state
information as well as operators that can change the state. These are all
bundled together into a single unit. Motion Server permits developers to
create their own objects. Details about this can be found in the section on
User Defined Types.

The <method> part of the command is filled in with the name of one of
the operations or �methods of doing something� that the object has been
�trained� in performing. In the example the method was MoveBy. The
method is separated from the receiver by a period. The period may remind
you of the separator between a Pascal record variable (or struct in C) and a
field of that record. The parallel is quite direct. Objects are supersets of
records allowing operations as well as static fields to be related to that
object. MoveBy has the behavior of moving the motor by a certain dis-
placement. The displacement is indicated as a parameter to the MoveBy
method. In this example the parameter was 20000.

Different methods take various numbers of parameters. For example the
following command would move both the X and Y axis in a coordinated
straight line move:

XYAxis.SetMotor(On);
XYAxis.MoveBy(20000,30000);

Here the receiver is the XYAxis, an �axis group� of type T2Axis which
represents the coordinated X and Y axis together. MoveBy is the method
however it has a different number of parameters than the MoveBy for a
single axis. For a two dimensional axis group MoveBy requires two param-
eters. For a 3 dimensional axis group you would provide 3 parameters etc.
The same method name can be used by different objects, each providing
the appropriate response to that behavior and taking as parameters the
appropriate amount of information. For example several different objects
respond to the method �Clear�. A text object responds by erasing the text in
its window. A T2Axis responds by erasing any curve information which
may have been recorded.

34

User Manual for Motion Server and Servo Application Workbench

Single Axis Modes of Motion
Single axis are the most versatile movers in Motion Server. A single axis can
respond to the following trapezoidal profiing methods:

MoveTo........ move to absolute coordinate
MoveBy........ moves relative to current commanded position
BeginMoveTo... moves to absolute coord but doesn’t wait
BeginMoveBy... moves to relative coord but doesn’t wait
Jog........... moves at a constant speed indefinitely
SetAccel...... set the acceleration rate
SetDecel...... sets the deceleration rate
SetSpeed...... sets the slew speed during moves
Stop.......... causes the axis to decelerate to 0 speed and stop -
execution waits for stop to complete
BeginStop..... causes the axis to start to decelerate to 0 speed and
stop - execution immediate continues
Abort......... abandons motion and stops immediately

Details of these methods can be found in the on-line help by entering the
help system, selecting search, and typing in the name. Let�s review each
motion mode one at a time.

MoveTo performs a move to an absolute coordinate. Do the command:

XAxis.MoveTo(0);

The X axis motor should move to the position 0. From the interpreter you
can check the result by doing the command:

Prompter.Writeln(XAxis.CommandedPosition);

The following message box should have appeared on your screen:

The prompter is another object which knows how to display information
in a modal manner (i.e. press �ok� before anything else happens). "Writeln"
is a method understood by many objects to display information as readable
ASCII characters. CommandedPosition is an object function which returns
the position the receiver axis is currently commanded to position to. The

35

3Introduction to the Motion System

display should have indicated a value of 0 for the
XAxis.CommandedPosition. You may also see the actual position of the
motor by typing the command:

Prompter.Writeln(XAxis.ActualPosition);

This should be a value close to 0 but may not quite be 0 due to stiction,
compensation, and other effects that determine the tracking quality of a
servo. In general �To� is indicative of absolute motion, and �By� is indica-
tive of relative motion. Now do the command:

XAxis.MoveTo(20000);

The motor should move about 10 turns. Check the position with the
prompter again to see that it moved to the position 20000. Now move the
motor back to 0 by �picking� the desired command from the history list
and then clicking the �do it� button.

MoveBy, as has been seen, performs relative motion. You can perform the
same set of exercises with MoveBy. With a starting point of 0 the results
should be the same.

36

User Manual for Motion Server and Servo Application Workbench

SetAccel and SetDecel are used to change how rapidly the motor comes up
to speed and how quickly it slows to a stop, respectively. These methods
take parameters in units of counts per second squared. Generally values of
100,000 are gentle, values of 1,000,000 sharper. Do the command:

XAxis.SetAccel(1000000);

Repeat the MoveBy test. You should notice a quick acceleration with the
same previous deceleration. Stepper motors can "slip" or "lose steps" if they
are asked to produce excessive accelerations. You will need to understand
the limits of your own system based on manufacturer information about
your drive electronics and motors as well as the demands placed on the
system by the loads you are moving.

Set the acceleration back by doing the command:

XAxis.SetAccel(100000);

An important issue in motion control applications has to do with �synchro-
nization�. Motion systems are often positioning �effectors� of some kind,
such as a drill head. Typically you want to move to some position, drill a
hole, move to a new position, drill another hole etc. You certainly do not
want to drill the hole before you get to the destination and you do not want
to move while you are drilling. It is important for the activities of drilling
and the activities of moving to be synchronized in such a way as to properly
wait for each other. MoveTo and MoveBy are methods which wait for the
move to finish before going to the next command. The program is sus-
pended until the motion is complete. For an application like the drill
application waiting is extremely important. In other applications, however,
just the opposite may be important. In order to save time it may be neces-
sary for other activities to be preparing while the drill is moving to a new
location. For cases where it is important to continue doing activities while
the motors are in motion there are commands which start with the word
�Begin�, i.e. BeginMoveTo, BeginMoveBy, BeginStop.

One obvious command that is relevant to an axis in motion is the com-
mand Stop. Begin another move using BeginMoveBy and then do the
command:

XAxis.Stop;

37

3Introduction to the Motion System

The motor should stop. Stop slows the motor down at the specified decel-
eration rate. Abort halts the motor dead in its tracks. Again, begin a move
and do the command:

XAxis.Abort;

The motor should suddenly stop. The difference between Stop and Abort
is the deceleration of the motor. Abort should generally be used in emer-
gency situations where movement may be dangerous. The jolt to the
machine is usually not good for the mechanics, particularly when aborting
from a high speed. As well, aborting from a high speed may result in such a
large following error that the servos may go beyond the specified
ErrorLimit and shutdown. If you plan on aborting from high speeds make
sure the ErrorLimit is large enough to prevent the servos from shutting
themselves down.

There are some situations where you need to stop motion but continue to
do operations while the motor is slowing down to complete the stop. This
can be achieved with the method BeginStop which immediately returns
after telling the motor to start decelerating.

Jog is used to run a motor at a specified speed indefinitely. (Only do the
following test if your mechanism has no movement limitations). Do the
command:

XAxis.Jog(1000);

The motor should begin jogging at a speed of 1000 counts/second. Now do
the command:

XAxis.Jog(2000);

The motor should speed up by a factor of 2. While in the middle of a move
(in this case an indefinite move) it is possible to request a new move.

38

User Manual for Motion Server and Servo Application Workbench

Dynamic Profiling
One of the strengths of Motion Servers� motion system is the ability to
change a move while in the midst of the move. It is possible to change the
acceleration, deceleration, speed, and even destination on the fly (for a
single axis) during any part of the accel, slew, decel velocity profile. It�s
possible to change a jog to a move or a move to a jog while in the midst of
doing either one. Let�s study some examples of this.

Set the X axis speed to 1000 with the command:

XAxis.SetSpeed(1000);

Now do the command:

XAxis.BeginMoveBy(20000);

Immediately follow the command with:

XAxis.SetSpeed(20000);

The motor should speed up to a much higher speed and promptly finish
the move which was started at a slower speed. Now set the decel to be a
very small value, i.e. do the command:

XAxis.SetDecel(10000);

Start another move with the command:

XAxis.BeginMoveBy(20000);

The motor should quickly speed up and then start almost immediately
slowing down in a gradual manner. Because the decel is so slow it has to
start slowing down early in order to come to a stop by the time it gets to the
destination. Now do the command:

XAxis.SetDecel(100000);

39

3Introduction to the Motion System

The motor should accelerate up to its slew speed and then decelerate at the
higher decel rate to complete the move. Reset the motor position by using
the command:

XAxis.SetActualPosition(0);

It�s possible for a single axis move to have the destination changed on the
fly. Begin a move with the command:

XAxis.BeginMoveBy(20000);

Before the command has a chance to finish do the command again, i.e. give
another

XAxis.BeginMoveBy(20000);

Wait for the move to finish and inspect the actual position with the com-
mand:

Prompter.Writeln(XAxis.ActualPosition);

You see that the position is farther than 20000. The first move was super-
seded by the second move which �spliced� a move by 20000 counts onto
the current position of the motor, somewhere on its way to the original
target of 20000.

You may be thinking that there are some problematic situations with
dynamic profiling. It seems possible to ask for unreasonable things. This is
indeed the case. For example perform the previous test, however instead of
having the second move be a move by 20000 use a parameter of 0. What we
are saying is �while in motion, move to where you currently are�, that is to
say stop instantaneously.

 Start the motor with a first move command of:

XAxis.BeginMoveBy(20000);

Immediately follow the command with:

XAxis.MoveBy(0);

40

User Manual for Motion Server and Servo Application Workbench

The result should be a prompter box indicating that an �escape� has oc-
curred and the motor slowing at the specified decel rate. The escape code
indicates a �Motion Overrun�. This is the case. It is impossible to satisfy
the command to stop immediately while maintaining the specified decel
rate. The behavior of the system when given impossible commands is to
gracefully stop after �raising an exception�. Douloi Pascal supports struc-
tured exception handling, a powerful tool for responding to these sorts of
problems. Additional details of the use of exception handling will be
discussed in the language section. Using the language system it is possible
to �trap� this exception and respond in an appropriate manner so as to
achieve the desired application behavior.

Multiple Axis Modes of Motion
Motion Server supports vector coordination of groups of axis for group
sizes from 2 through 6. Groups are coordinated so as to all start at the same
time, stop at the same time, and transition from accel to slew and slew to
decel at the same time. This results in �straight line joint space� vector
motion in whatever dimension of space the machine occupies. Note that if
the machine has rotary joints that straight lines in �joint space� do not
create straight lines in Cartesian space. Accomplishing straight cartessian
space lines on a mechanism with rotating joint, such as a cylindrical or scara
configuration robot, requires kinematic equations. Motion Server is very
well suited for performing high-performance kinematics. Consult Douloi
Automation for additional information.

The methods for multiaxis machines include the commands for single axis
machines with additional parameters as needed for the additional axis
included. The following methods are provided for multiaxis groups:

CommandedPosition... returns distance along vector path
MoveTo.............. move to absolute coordinate
MoveBy.............. moves relative to current commanded
position
MoveToVector........ moves to absolute vector coordinate
MoveByVector........ moves by relative vector coordinate
BeginMoveTo......... moves to absolute coord but doesn’t wait
BeginMoveBy......... moves to relative coord but doesn’t wait
BeginMoveToVector... moves to absolute vector coordinate no wait
BeginMoveByVector... moves by relative vector with no wait
SetAccel............ set the acceleration rate
SetDecel............ sets the deceleration rate
SetSpeed............ sets the slew speed during moves

41

3Introduction to the Motion System

Stop................ causes the axis to decelerate to 0 and stop,
execution wait for stop to finish
BeginStop........... causes the axis to decelerate to 0 and stop,
execution immediately continues
Abort............... abandons motion and stops immediately
LinkTo.............. associates a data storage area to the for
holding curve info
AppendMoveTo........ adds an absolute component to a curved path
AppendMoveBy........ adds a relative component to a curved path
AppendArc........... add an arc segment to a curved path
MoveAlongCurve...... begins motion along continuous curved path

When referring to acceleration and speeds for a multiaxis group the accel-
erations and speeds refer to the vector path of motion, not of any particular
axis. Note that Motion Server is not aware of any physical gear reductions
in the mechanism that makes one axis have a different counts/inch ratio
than another axis. This may result in physical velocity discrepancies be-
tween two directions of motion although the path will be correct. In
general it is helpful to the motion controller for the physical scale of the
machine, i.e. counts/inch, to be the same in all directions for uniform
behavior. If this is not possible it to accomplish there is a technique which
can be employed to make the mechanism appear to be so. For additional
information contact Douloi Automation.

Multiaxis groups do not permit changing the destination of an in-progress
move on-the-fly however accel, decel and speed may be changed on-the-
fly.

It is also possible to specify continuous motion along a curve. This capabil-
ity will be discussed in a later section.

42

User Manual for Motion Server and Servo Application Workbench

43

4Chapter

4) Servo Application
Workbench Tutorial

Introduction to SAW
The interpreter used in the previous section has provided an opportunity to
perform motion using individual commands. Servo Application Work-
bench provides a way to package commands and direct application behav-
ior. This section describes how to learn to use SAW.

Developing an application with Servo Application Workbench is similar to
using a drawing program and similar to procedural programming. The
visual arrangement and constitution of a program is described with drawing
tools to include objects such as buttons, text items, editors, and �subassem-
blies� which themselves can contain such parts. Behaviors and relationships
between these objects are then created using programming techniques.

SAW uses an �event� model of operation. Different activities, such as
clicking the mouse button, create �events� that the program responds to.
Different objects may be programmed to respond to different events to
create program behavior.

The most straightforward way to understand SAW is to use it. The tutorial
following in the next section will lead you through the use of different
SAW capabilities in lessons with occasional �projects� that combine prin-
ciples from the lessons in a practical result.

Douloi's version of Object Pascal is used in the tutorial. If you are familiar
with most any programming language you should be able to navigate the
tutorial aided by the specific commands provided. The chapter discussing
the Douloi Pascal Language provides more specific language details.

44

User Manual for Motion Server and Servo Application Workbench

45

4Servo Application Workbench Tutorial

Lesson 1- Running a Minimum SAW
Application

Objective

The purpose of this lesson is to understand how little is required to make
an application with the Servo Application Workbench and to gain experi-
ence in starting applications.

Start SAW

Double click on the SAW icon. An "About Box" is shown introducing
SAW.

Click on the �Ok� button after the SAW title is shown.

46

User Manual for Motion Server and Servo Application Workbench

SAW's work area should then be similar to what is shown below:

Run the Default Application

From the SAW main menu choose Run, and then choose Start App. There
should now be a new window that contains as its caption �a Title" such as
shown below.

This is the �default� application provided as an application foundation. This
window should be the same size and shape as the drawing first seen in the
drawing area of SAW. Drag the title bar of this window and note that it
behaves like other Windows applications.

47

4Servo Application Workbench Tutorial

Close the window clicking on the �system menu� of the window (the little
upper-left corner button on many Windows applications).

This produces the following pop-up menu:

Choose "Close" . The window should disappear. Alternatiely, you can
double click on the system menu to close the application.

Modify the Default Application

Click on the picture of the Window which is in the SAW drawing area (not
the resultant Window application that was just being studied). Four
�handles� should appear on the outline indicating that the window is
selected for alteration.

48

User Manual for Motion Server and Servo Application Workbench

Move the cursor over one of the handles. The cursor shape should change
to a four-way shape indicating its over a handle. Drag the handle to a new
location to change the shape of the window.

From the main menu choose Run, then choose Start App. You should see
the running application window again but with a different size reflecting
the alteration you made.

 Summary

SAW is able to immediately provide a default application which has funda-
mental behaviors such as dragging and displaying a system menu. This
foundation application is what motion applications are based on.

49

4Servo Application Workbench Tutorial

Lesson 2 - Creating a Button

 Objective

Although we�ve created an application it hasn�t done anything yet. Buttons
are the simplest way of asking for program behavior. This lesson should
familiarize you with the general behaviors of buttons.

Create a Button

Select from the �tool bar� on the left of side of SAW the tool which is in the
right-most column, second from the top, which has the rectangle being
pushed by a finger. This is the �button� tool.

Move the cursor to the upper left interior of the default Window in the
SAW drawing area and drag to the lower right area. When you release the
mouse button you should see a Windows button in the drawing area of
SAW, such as shown below.

50

User Manual for Motion Server and Servo Application Workbench

From the main menu select Run/Start App. You should now see the default
application running with the recently created button. Pushing the button
shows the characteristic button movement but no action is performed
because none has been specified. Close the window and return to SAW.

Modify a Button Appearance

In the SAW drawing area, select the button by clicking inside the button
shape.

Relocate the button (within the boundaries of the default window frame)
by dragging the button to a new location.

Resize the button by dragging one of the four corner handles to a new
location.

Double click on the button in the SAW drawing area. A button editor
should appear similar to the one shown below.

Select the �Legend� field, currently containing the word �Button� and
change that word to some other word, such as �Test�. Close the button
editor by clicking "Ok".

From the main menu choose Run, then choose StartApp. Note that the
legend on the button has changed.

Close the window.

Modify a Button Behavior

Double click on the button in the SAW drawing area. Note that on the
lower section of the button editor there is a list of Event Procedures. SAW
supports the �event� user interface model used by Windows. Different
objects can experience different �events� and produce a related behavior.
For buttons the most frequently experienced event is a mouse click. But-
tons are provided with a procedure named �Click� which defines what
should happen if the user clicks the mouse on the button.

51

4Servo Application Workbench Tutorial

Select the click procedure in the list box and then select the Edit button
adjacent to the list box. An editor should appear similar to the one shown
below.

Position the cursor on the line which says {Your code goes here} and
replace that line with the line:

Prompter.writeln(‘I was just clicked’);

Note that the word after Prompter and the period is "write line", with "line"
abbreviated to "LN", (not 1N). Also note that the quotes around "I was just
clicked" should be single quotes, (i.e. un-shift of double quote, not un-shift
of tilda), and that both quotes are the same (despite whatever �help� the
manual publishing system has provided by making one appear to be a back-
quote).

52

User Manual for Motion Server and Servo Application Workbench

Close the editor by double click on the upper left icon. Close the button
editor by selecting �Ok�.

Start the application. You should see a window with a button in it as before.
Now click on the button. You should see a prompter window appear with
the text �I was just clicked�.

Click on the �OK� button below �I was just clicked� to acknowledge the
prompter.

 Summary

Buttons are created by selecting the Button Tool, and dragging a button
shape in the SAW drawing area on the application window. By double
clicking on the button picture a button editor is provided to alter button
attributes such as the legend and the behavior of the button when clicked.

53

4Servo Application Workbench Tutorial

Lesson 3 - Creating Text

Objective

This lesson illustrates the use of text in an application both passively for
annotation and actively as a mechanism for displaying information.

Create a Text Item

Select from the �tool bar� on the left of side of SAW the tool which is in the
right-most column, third from the top, which has the capital A. This is the
�text� tool.

Move the cursor to the upper left interior of the default Window in the
SAW drawing area and drag to the lower right area. When you release the
mouse button you should see a dotted rectangle that contains the word
�Text� as illustrated below.

From the main menu select Run\Start App. You should now see the default
application running with the word �Text� on it. Close the window and
return to SAW.

54

User Manual for Motion Server and Servo Application Workbench

Change Text Interactively

In the SAW drawing area, select the text item by clicking inside the dotted
rectangle shape.

Relocate the text (within the boundaries of the default window frame) by
dragging the text item to a new location.

Resize the text window by dragging one of the four corner handles to a new
location. The size of the text is currently fixed. The length of the box
determines how long a section of text can be accommodated.

Double click on the text box in the SAW drawing area. A text editor should
appear similar to what is shown below.

Select the lower field, currently containing the word �Text� and change
that word to some other word, such as �Hello World�. Select Run\Start
App. The appearance should have changed to what is shown below.

Close the application and go back to SAW.

55

4Servo Application Workbench Tutorial

Change Text with a Program

Double click on the text box again. The upper field is called �Name�.
Objects being placed into the application, such as buttons and text items,
have names which are used to refer to these objects. Edit the name of the
text item to be �Display� such as shown below.

Close the Text editor.

Create a new button and place it below the text item as shown in below.

Double click on the button and change the button legend to �Push Me�.

56

User Manual for Motion Server and Servo Application Workbench

Select the Click procedure in the event list and select �Edit�. Modify the
click procedure to include:

procedure click;

begin
Display.Clear;
Display.Writeln(‘Pushed....’);
end;

Run the application.

Push the �Push Me� button. You should see new text in the Display text
item.

Close the application and return to the SAW drawing area.

Select the �Push Me� button. While holding down the control key on the
keyboard drag the �Push Me� button to a new location. Note that you have
created a copy of the button by holding down the control key. Copies
contain the same shape, attributes, and procedures as the original however
the name has been changed. Edit the legend of this button copy to be

57

4Servo Application Workbench Tutorial

�Clear� and edit the click procedure to read:

procedure click;
begin
Display.Clear;
end;

Run the application again. Now the �Push� button fills the text item and
the �Clear� button clears it.

Questions and Answers

Question: Does the button name matter?

Usually button names are not used although they do need to be
unique. The names provided for you by SAW should be unique
names. It is possible to refer to the click procedure of a button,
however, by referring to the name of the button followed by click.
For example if the clear button in the above example was named
"ClearButton" we could have invoked the click procedure for that
button in the "Push Me" button by referring to ClearButton.Click.

Summary

Text items can be created during development to annotate an application.
Text items can also serve as display mechanisms to show values being
produced by application programs. In a manner similar to buttons, spatial
attributes of text can be set by dragging the Text item in the drawing area.
Other attributes an be changed by double clicking on the text time and
editing the attribute.

58

User Manual for Motion Server and Servo Application Workbench

59

4Servo Application Workbench Tutorial

Lesson 4 - Using Plates

Objective

Several different metaphors are used by the Servo Application Workbench.
This lesson introduces the plate metaphor.

Change a Plate Title

Double click on the default window. An editor should appear similar to
figure below.

This is called a Plate Editor. The default window is called, in SAW terms, a
plate rather than just a window. Plates appear as windows but contain
additional information, much of which is available to alter with this plate
editor. The idea behind the word �plate� is the action of attaching items to
plates. Already text items and buttons have been attached to this plate. As
well it is possible to attach non-spatial items to a plate including data
structures such as variables and arrays, and behaviors such as event proce-
dures and user procedures and functions. These different things become
part of the plate and travel along with it.

Click on the �Title� field and change that field to the title �Test Applica-
tion�

Close the Plate Editor by clicking "Ok" and run the application (Run/Start
App). Note that the caption is now "Test Application" instead of "a Title".

60

User Manual for Motion Server and Servo Application Workbench

Close the application by double clicking on the upper left system menu
icon on the Test Application window.

Change a Plate Appearance

Double click on the default window to invoke the Plate Editor again.

Plates can display with different Window frame styles. On the left side of
the plate editor is a small picture of the current style. By clicking on �Next�
or �Previous� alternative styles can be chosen. Advance through the selec-
tion of styles until a thin black line border without a caption is chosen.
Close the plate editor by clicking "Ok".

Add a text item to the center of the plate which reads �OK. Now What?�.

61

4Servo Application Workbench Tutorial

Run the application. The plate appears, without the caption bar and most
noticeably without the system control icon which allows you to close the
application!

From the SAW main menu select Run\Stop App to close the application
even when the application itself is lacking a system menu.

Create a Plate Variable

Double click on the default plate to invoke the plate editor. In the middle of
the plate editor is a list for Plate Symbols. These are different procedures,
variables, and constants that may be attached to the plate. Select Add. A
dialog box appears showing the different sorts of things that can be attached
to a plate.

62

User Manual for Motion Server and Servo Application Workbench

Select the default choice, "Variable". A variable editor appears that allow you
to specify a name for the variable, a type, and array information if the
variable is to represent an array. Type into the Name field the word
�Counter� and select from the Type combination box the type �Longint�.
Do not check �Is An Array�.

When these items have been indicated select �OK� to leave the variable
editor, and �Ok� to leave the plate editor so that you are back to the SAW
drawing area.

Change a Plate Variable

Change the name of the Text item in the application to the name "Display".
Add to the plate a button with the legend �Reset�. Make the click procedure
for reset contain:

63

4Servo Application Workbench Tutorial

Add to the plate a button with the legend �Count�. Make the click proce-
dure for count contain:

Run the application. Push Reset. The Display should clear. Push Count.
The Display should show 1. Push Count again and the display should
show 2.

The figure below shows the application after several button presses.

Close the application to go back to SAW.

64

User Manual for Motion Server and Servo Application Workbench

Change a Plate Event Procedure

Like buttons, plates have different events that they respond to through
event procedures. Double click on the plate to invoke the plate editor. The
event procedure list for plates, near the bottom, includes names such as
BeginDrag, Drag, EndDrag, and Setup. BeginDrag occurs when the mouse
button is pushed down over a plate. Drag occurs when the mouse moves
with the button down over a plate, and EndDrag occurs when the mouse
buttons is released. Examples of how to �drag and drop�, including drag-
ging a 2 axis mechanism with the mouse, are discussed in the Drag and
Drop Application Sketch.

Select the Setup event procedure and choose Edit. Setup is an event proce-
dure which invokes when the window first appears. Edit the setup proce-
dure to be the reset button behavior:

Close this window by double clicking on the window's sytem control icon,
and then close the plate editor by clicking "Ok".

Select the Reset Button and choose Edit/Cut. Cutting the selected object
removes it from the plate. We don�t need the reset button now to initialize
the plate because the initialization behavior has been put into setup.

Now run the application. The initial appearance of Display should be
blank. Pushing �Count� should display 1 and ascend with subsequent
clicks.

Close the application.

65

4Servo Application Workbench Tutorial

Create a Plate User Procedure

Plate procedures provide subroutine capability to SAW. Double click on
the default plate to invoke the Plate Editor. Click on "Add" near the Plate
Symbol list. Choose "Procedure" from the list of different user symbols. An
editor should appear with a procedure template.

Edit the procedure to look like the following:

Close the editor by choosing close from its system menu or by double
clicking the system menu.

Edit the click procedure for the "Count" button to read:

procedure click;
 begin
 Increment;
 end;

Close this editor and close the Plate Editor by clicking "Ok". Run the
application. The behavior should be the same.

Summary

Plates provide a framework for declaring application related procedures and
variables. Plates respond to events and can have event response procedures
which invoke when events occur.

66

User Manual for Motion Server and Servo Application Workbench

67

4Servo Application Workbench Tutorial

Lesson 5 - Using Bump Graphics

Objective

Bump graphics provide applications with a more physical appearance that
helps the user feel more comfortable with �instrument� type interfaces.
Bumps are a convenient means of creating these appearances. This lesson
introduces you to the use of bumps.

Turn on the Grid

The grid in SAW causes the cursor to "snap" to a discrete array of points
helping retain alignment of buttons and graphics that are placed on the
screen. It is most convenient to develop with the grid on. From the SAW
main menu select View/Grids... to see the following dialog:

A grid size of 10 by 10 is convenient for many types of applications. After
typing in 10 for X and 10 for Y select OK. Select the default plate and drag
the upper left corner as well as the lower

right corner so as to "snap" these points onto the grid.

Create a Bump

The left column of tools is primarily used to provide cosmetic graphics to
an application. Select the �Bump Tool�, which is depicted as a chamfered
surface near the bottom of the left column of tools.

Drag a rectangle over the surface of the default plate. When you release the
mouse a �bump� has appeared on the screen in default colors and depth.
Place the upper left point on the left margin, under the caption bar, and the
lower right point at the lower right point of the default plate.

Select the bump by clicking inside its area. Drag one of the bump handles
to a new location to resize the bump.

68

User Manual for Motion Server and Servo Application Workbench

Modify a Bump

Double click on the bump. A �Bump Editor� appears allowing you to alter
the properties of the bump.

Indicate a different depth for the bump by changing the �depth� value to a
larger number. Click on �Set� after changing the value. Click on "Ok" to
close the Bump Editor.

Place a Dip on Top of a Bump

Select the bump tool again and drag another bump on the surface of the
first bump. Now you have a bump on a bump.

69

4Servo Application Workbench Tutorial

Double click on the new bump to invoke the �Bump Editor�. Make this
bump have a negative depth, i.e. -3, and click the "Frame Outside"
checkbox to remove the unnecessary outline. Click �Ok� to have the new
depth take effect. Note that the bump now appears to go down instead of
up, i.e. a dip instead of a bump.

Dips generally are nicer without being outlined. If dips or bumps are
particularly large, drawing in the corners helps define the shape. Experi-
ment with these different outline options to see the effect.

Reorder Graphics

When graphics are on top of one another the order of display is important.
To study this issue, create a new application by selecting �File\New� and
confirm you want to start over.

Create a button in the middle of the default dialog.

Create a bump that completely covers the button. Note that the button is
now hidden.

Select the bump (if its not still selected) and select the menu option �Ar-
range/Send To Back�. Graphics are recorded in a list. The list is drawn
from the back to the front. By sending the selected graphic to the back you
are indicating that you want it drawn earlier, i.e. �in back of� the rest of the

70

User Manual for Motion Server and Servo Application Workbench

graphics in the image. Select graphics and �Arrange/Bring To Front� and
�Arrange/Send To Back� to become familiar with this ordering principle.

There can be times, when multiple graphics are on top of one another or
are the same size, that selecting a particular graphic is difficult. "Sending to
the back" a graphic which insists on being selected is one technique which
can help you select the desired graphic. Another technique which can be
used is to temporarily move out of the way a graphic which seems to insist
on getting selected so as to make sufficient clearance to pick a particular
graphic you would like to work with. After modifying the desired graphic
you can easily move the offending graphic back into place.

Summary

By using the �Bump Tool� cosmetic graphic effects can be added to a plate
to enhance the texture or �physical appearance� of the plate to produce
effects such as chamfered edges and indentations. These features can help
group and organize an application as well as make the application appear
more comfortable and familiar to the user.

71

4Servo Application Workbench Tutorial

Lesson 6 - Calculator Project

Objective

Enough principles have been learned to make your first application. This
lesson will lead you through the construction of a simple 4 function
calculator. This calculator illustrates the relationships between the different
features learned so far.

Create Calculator Faceplate

Turn on the grid with 10 pixels for each X location and 10 pixels for each Y
location.

Resize the default plate to be about half the size of the SAW drawing area.

Change the name of the default plate to "Calculator".

Add a bump to the surface of the default plate and make the bump 5 pixels
high. Frame the outside of the bump and frame the corners.

Add three dips to the surface of the default plate with a depth of 3, i.e. -3.
Make a wide narrow dip near the top for the calculator display, a more
square dip near the bottom to group the calculator number keys, and a
vertical rectangular dip on the lower right to group the operation keys.

Save the project development so far by selecting �File/Save As� and type the
name �CalcTest�.

Run the application to test what has been done so far. You should have a
result something similar to what is shown below.

72

User Manual for Motion Server and Servo Application Workbench

Create Calculator Number Keys

Add a Text Item inside the dip near the top of the calculator. Rename this
text item to be called �Display�. When placing the text you may discover
that the "dip" is not the right size or in the right place. After positioning the
text, drag corners of the dips, possibly moving other things out of the way,
so as to have the dip symmetrically around the display. It may be good to
make the dip deeper, as is often the case in physical calculators.

Add a small button inside the lower left dip. Place on this button the legend
�1�. In general buttons will be the size of the dragged rectangle, however a
button will enlarge itself so as to hold the legend. If the button "grew" it
most likely is because of the size of the default legend "button". Change the
legend first to "1" (a much shorter legend) and then resize the button by
dragging the button's corners. Your work should appear similar to the
following picture.

Edit the click procedure for this button to be:

procedure Click;
 begin
 PushNumber(1);
 end;

PushNumber is a routine (yet to be written) that handles the action of a
calculator key being pressed.

73

4Servo Application Workbench Tutorial

Control-Drag the button to create a copy and place it adjacent to the first.
Change the legend of this button to read �2�. Edit the click procedure for
this button to be:

procedure Click;
 begin
 PushNumber(2);
 end;

In a similar manner create the other 8 keys for the calculator keypad.
Having the number "1" key in the upper left conforms to the "telephone"
keypad. Normally calculators have the number "1" in the lower left.
Change from the telephone arrangement to the calculator arrangement by
dragging buttons to the correct locations. Note that you are allowed to drop
buttons into the empty area beside the calculator and pick them up later
after you've freed up the spot where they will be placed.

Save your work.

Create Procedure PushNumber

PushNumber handles the case of one of the number keys being pushed.
Double click on the default plate to invoke the plate editor. A good place to
click plates covered with bumps is the title bar area. Clicking on the body of
the plates, generally produces the bump editor for the overlaying bump
graphic representing the calculator surface, which is not the item you want
at this point.

Click �Add� and choose �Variable�. Edit the name of the variable to be
DisplayValue and give it a Longint type. The variable editor should appear
as shown below:

DisplayValue will remember the value of the calculator display. Click on
�Ok� to confirm this new variable.

74

User Manual for Motion Server and Servo Application Workbench

Click �Add� and choose �Procedure�. Edit this new user procedure to be:

Edit the Setup procedure for the plate to be:

Click �Add� and choose �Procedure�. Edit this new user procedure to be:

75

4Servo Application Workbench Tutorial

Each time a number key is pushed this will cause the calculator display to
shift to the left and accumulate the contribution of that particular key
value.

Save your work and run the application. Clicking numbers should cause
the calculator display to change.

Create Calculator Operation Keys

Control-Drag one of the number keys into the vertical dip area where the
calculator operations will be placed. Edit the legend of the key to read �+�.
Change the click procedure for this button to be:

Control-Drag a copy of this button to the space below. Change the legend
to the �-� sign and change the click procedure to be:

In a similar manner create multiply (�x�) and divide (�/�) keys with the
PushOperator parameters of �multiply� and �divide�.

76

User Manual for Motion Server and Servo Application Workbench

Invoke the Plate Editor and click on �Add�. Choose �Constant� from the
set of choices. Constants relate names to values which do not change. Type
the name �Plus� and set the value to 1 so that the Constant Editor looks like
the one shown below.

 Click �Ok� to confirm this new symbol.

In a similar manner create the constants Minus, Multiply, and Divide with
values of 2, 3, and 4 respectively.

Add a new Variable named ParameterBuffer and make it a longint variable.

Add an integer variable named Operator.

Add a new procedure with the following body:

Save your work.

77

4Servo Application Workbench Tutorial

Create Equals Key

Control-Drag a copy of the Plus key below the list of operation keys. Make
the legend �=� and edit the click procedure to read:

Create Clear Key

Control-Drag a copy of the Plus key below the equals key. Make the legend
�C� and edit the click procedure to read:

78

User Manual for Motion Server and Servo Application Workbench

Test the Calculator

Run the application. One possible appearance is shown below.

Click on several number keys. The number should accumulate in the
calculator display. Click on an operator. Click on some additional number
keys, and click on �=�. The answer should appear in the calculator display.
�C� should clear the display back to �0�.

Close the application.

Summary

Using only the concepts learned so far a four function calculator has been
built which has a more physical �feel� than many commercial Windows
calculators. By sharing code sections through user procedures most click
procedures were only one or two lines long containing calls with button-
specific parameters.

79

4Servo Application Workbench Tutorial

Lesson 7 - Using Plate Drag Methods

Objective

Plates support several different methods related to mouse activity including
BeginDrag, Drag, and EndDrag. These methods are illustrated in this
lesson.

Create a Display

Use the "text" tool to create a text item named Display. Place the text in the
center of the window near the top. The result should look similar to what is
shown below.

80

User Manual for Motion Server and Servo Application Workbench

Edit the BeginDrag Method

Plates respond to the mouse being clicked down on their surface by invok-
ing their BeginDrag method. To edit the BeginDrag method double click
on the default plate, select the BeginDrag method from the list of plate
procedures displayed in the plate editor, and select Edit. Change the
BeginDrag method to have the following text.

Run the application. Click the mouse on the plate. The coordinates of the
mouse should be shown in the Display text object. Move the mouse to a
different area and click again. The coordinates dislpayed should be differ-
ent. The BeginDrag procedure invokes whenever the mouse button goes
down (normally the beginning of a "drag" operation i.e. the name
BeginDrag). The behavior in this case of BeginDrag is to write the coordi-
nates of the mouse into the Display. MousePosition is a T2Vector that
contains the coordinates of the mouse as defined in the current coordinate
frame of the plate.

Edit the Drag Method

Now edit the Drag method in the plate event procedure list and give Drag
the same statement as BeginDrag. Run the application again. Click the
mouse on the plate and move the mouse while continung to hold down the
mouse button. Note that the display coordinates change in response to the
mouse position. The Drag method invokes at about 18 Hz whenever the
mouse moves with the mouse button down.

81

4Servo Application Workbench Tutorial

Edit the EndDrag Method

Now edit the EndDrag method to contain the following statements:

procedure EndDrag;
begin
Display.Writeln('Button Up');
end;

Run the application. Now when the mouse button is released the display
changes from showing the coordinates of the mouse to the message "But-
ton Up". The EndDrag method invokes when the mouse button is re-
leased. This gives you an opportunity to act on the indicated change in
mouse position. You can establish a specific coordinate frame with
SetCoordinateFrame.

Summary

By using the BeginDrag, Drag, and EndDrag methods it is possible to
perform operations based on mouse movement. BeginDrag invokes when
the mouse button goes down, Drag invokes while the mouse button
moves, and EndDrag invokes when the mouse button releases.

82

User Manual for Motion Server and Servo Application Workbench

83

4Servo Application Workbench Tutorial

Lesson 8 - Using Bitmap Graphics

Objective

The appearance of an application can be enhanced with several different
graphical techniques. One technique, "bump" graphics, has been discussed
in a previous lesson. This lesson introduces the use of bitmaps which can
be made with programs such as the Paint program that comes with Win-
dows. Bitmaps allow detailed images to be incorporated into an application.

Select the Bitmap Filename

Select the File\Choose Bitmap menu item. Select the provided bitmap
EARTH.BMP found in the Servo subdirectory. This is the bitmap that
will be used for subsequent bitmap operations.

Crop Bitmap

Select the "cropping" tool, the tool with the 90 degree opposing right
angles. This is used to drag on the surface of a plate a region which the
bitmap will "show through". The bitmap will be constrained or "cropped"
to the inside of this rectangle. After selecting the tool drag a box across the
default plate approximately the size of the default plate.

Position Bitmap

The cursor should now change to a fat cross. Drag the cross over the center
of the plate and note that the bitmap image (in this case a small bitmap of
earth) follows the fat cursor. Release the mouse button and the bitmap
becomes "fixed" to the last position. If you are not happy with the bitmap
location, select it by touching it with the "Choosing" tool, select Edit\Cut,
and try again. Run the application. An example result is shown below.

84

User Manual for Motion Server and Servo Application Workbench

Close the running application, select and cut the bitmap and place the
bitmap again into the application with the cropping tool. However, this
time, crop a much smaller rectangle, about half the size of the bitmap. The
bitmap only is shown through the more restricted size of the cropping. The
result of this smaller cropping rectangle is shown below.

Bitmaps may be used with other graphics techniques. For example, bitmaps
can be used in conjunction with bump graphics to produce panels such as
is shown below (application not fully functional!).

Remember that it may be necessary to order the grahics appropriately so
that the you see what you would like to. Drag methods work "through"
graphics

Summary

Bitmap graphics allow the addition of detailed images to Windows applica-
tions. These images can serve as a context for controls (i.e. a picture of a
machine on which buttons effect corresponding aspects of a machine) and
can be used with other graphic techniques such as bumps. Bitmaps may be
created with the Windows Paint program or any other program that pro-
vides *.BMP format Windows bitmap files.

85

4Servo Application Workbench Tutorial

Lesson 9 - Using Geometric Graphics

Objective

Geometric graphics of various shapes are available to enhance an
application's appearance. These shapes are more simply constructed than
bitmaps having tools for construction as part of SAW. The creation of lines,
squares, squares with rounded corners, and ellipses will be described.

Drawing a Line

Select the line drawing tool which has the diagonal line and is positioned
on the left side of the tool bar. Create a line by dragging across the surface
of the default plate. Double click on the line and the graphic editor should
appear allowing you to change the outline color and width of the line. Most
graphics have insides as well as outsides and can have different colors and
attributes for each. Lines just have outsides. The session at this point might
look like the figure below.

Lines are considered "rectangular" graphics and can be resized with the four
handles typical of a rectangle. Note that the selection of a line is based on
the area of the described rectangle. Accordingly horizontal or vertical lines
are not selectable by touching since they have no area. However they can
be selected by being enclosed by the chooser tool.

86

User Manual for Motion Server and Servo Application Workbench

Drawing a Rectangle

The next tool down on the toolbar is the tool for drawing rectangles and
has a rectangle on its surface. Select this tool and drag a diagonal to indicate
the size of the rectangle. Double clicking on the rectangle produces the
graphic editor allowing you to change the color of the inside, the pattern of
the inside, the width of the describing outside line and the outline color. By
control-dragging the selected rectangle you can make a copy the size size.
By making the copy black and "sending to the back" you can create a
graphic shadow effect such as is shown below.

Drawing a Rounded Corner Rectangle

By using the tool below the rectangle tool you can draw rectangles with
rounded corners. The figure below has a diagonal pattern,

Creating an Ellipse

An ellipse can be made with the next tool down. If the sides of the dragged
rectangle are the same, the ellipse will be a circle. The following figure
shows several ellipses drawn across the surface of the plate.

87

4Servo Application Workbench Tutorial

Drawing Closed Polygons

The next tool draws closed polygons. Select the tool and drag a line. After
releasing the mouse button go to another point and touch the plate. An
additional line is added to the polygon. Continue clicking points to add
vertexes. On the last vertex double click. This concludes the operation by
adding the double click vertex and connecting that vertex to the original
point. It takes a bit of practice to remember to double click before you get
all the way back to the original point. Creating a polygon with a shadow
and two shadowed spheres is shown below.

Drawing Open Polygons

The last geometric graphic tool is the open polygon tool located just below
the closed polygon tool. This tool works in much the same way as the
closed polygon however the final line connecting the last vertex to the first
vertex is not drawn. Below is a session where the width of the polygon has
been increased to 10 and the color bar has popped up in response to a
request to change the color of the polygon.

88

User Manual for Motion Server and Servo Application Workbench

Summary

Geometric graphics can add color, shape, and context for controls and
displays in an application. Using the geometric drawing tools it is possible
to add lines, rectangles with and without rounded corners, ellipses, and
closed and open polygons. The color and pattern of these objects can be
changed by double clicking on the graphic object to produce the graphic
editor which changes the attributes of the graphic.

89

4Servo Application Workbench Tutorial

Lesson 10 - Using Attached Subplates

Objective

Hierarchy is a powerful organizational tool. SAW is able to create hierar-
chies of plates allowing the construction of modular, simpler, more capable
applications. Subplates may be created as components that are part of a
plate and relate in different ways including attached, popup, and merged.
This lesson discusses the subplate relationship of being attached.

Creating a subplate

Select the plate tool which is on the right side of the tool bar at the top.
Drag a square over a part of the default plate. When you release the mouse
you should see a "gift wrapped " package such as is shown below.

This new subplate is drawn as a gift wrapped package with red ribbons and
a red bow. Also displayed in the upper left corner of the package is the
package name. As is characteristic of most objects in SAW you edit
subplates by double clicking on the subplate object.

90

User Manual for Motion Server and Servo Application Workbench

Double clicking causes the package to "open up". The parent plate on
which this subplate is mounted is not displayed, and the gift wrapping is
gone to show what is inside the package. Since this is a default plate, there is
simply an empty plate waiting for objects to be attached to it. Double click
on this plate and you will see the familiar plate editor such as was used to
edit the default plate earlier.

To go back to the top level, close the plate editor by selecting "Ok", and
double click anywhere outside of the plate. This causes the view to ascend
back to the original default plate showing this subplate as a giftwrapped
package. Double click on the subplate gift wrap again and double click on
the subplate itself so as to return to the plate editor.

On the left side of the plate editor is the style selection. Click on "next"
multiple times to see all of the options. Subplates have more options than
the main plate. Underneath the graphical picture of each plate style is a
descriptive word. The word changes from "Popup " to "Attached " to
"Merged ". These are the three different ways a subplate can relate to its
parent. This lesson is concerned with the attached relationship. Attached
subplates are created the same time their parents are created and travel
around with the parents conveying a sense of being "attached " to the parent
plate.

Note that the plate editor for the subplate operates on a different plate than
the main default plate. When you create a variable in the subplate, that
variable is distinct from variables in the main plate. You can even use the
same variable name. They remain distinct, each plate having its own set of
variables. Note that the subplate, because it is a child of the main plate, is
able to "see" all of the variables and objects in the main plate directly as well
as its own. The main plate routines can access variables in the subplate if
the subplate name is included as part of the variable "path". This is illus-
trated in the following exercise.

Create a variable in the subplate named "Counter " and make it an integer.
Create a text object in the subplate and name it "Display ". Create a button
that contains the click procedure:

procedure click;
begin
counter:=counter+1;
Display.Writeln(Counter);
end;

91

4Servo Application Workbench Tutorial

Edit the setup procedure for the plate to assign Counter to 0.

procedure Setup;
begin
counter:=0;
end;

Select the subplate frame style that has the thin border. Save your work and
run the application. You should see the default plate with the sub plate
containing the display and button such as shown below.

Now add exactly the same elements to the top plate. Add an integer variable
named Counter, and a button that increments the value and writes the
value into a text object named display. You can save time making the button
by descending into the subplate, selecting the button, selecting Edit\Copy,
ascending back to the parent, and selecting Edit\Paste. Then position the
copy of the button on the left. Edit the setup procedure for the main
default plate (which is different than the one for the subplate) and assign
the counter value to 0. Now run the application. Each button should
operate its own seperate count display such as shown below.

Even though the variables have the same names they remain distinct. Each
variable first associates with the plate "nearest" it. Subplates have access to
all of the variables of the parents (and grandparents etc) without any
additional help. If they have variables of their own with the same name
their own variables take precedent over their parents variables. If you
particularly want the parents variable you can indicate so by giving the full
"path" to the parent variable. For example edit the main default plate and
give it the name main (as distinct from the default name PlateXXX). Now
edit the subplates button procedure to display Main.Counter instead of just
Counter. Now when you run the example the subplate display reflects the
value in the main display rather than its own counter variable.

92

User Manual for Motion Server and Servo Application Workbench

This ability to use the same symbolic names and not have conflicts is a very
useful feature of SAW and high level languages in general that support
"scoping ". Scoping permits subassemblies to be constructed seperately
from their place of use and to work correctly regardless of the environment
they are placed into. In general it is good practice to keep variables "close"
to their use and minimize the amount of "variable paths " which are used to
travel outside an objects scope.

Scoping is particularly useful when working with Catalog components.
Catalogs permit dropping into applications prefabricated subplates that
contain functions such as joysticks or storage scopes. Being able to use
these components without concern for name conflicts is very helpful.

Summary

Attached subplates allow an application to be arranged in a heiarchical
manner with isolation between the symbols used in the parent plate and
symbols used in the subplate. This isolation prevents name collisions and
problems that would otherwise occur without a symbol scoping mecha-
nism.

93

4Servo Application Workbench Tutorial

Lesson 11 - Using Pop-Up Subplates

Objective

Although an application may require many controls to properly operate, it
is very confusing to see all of an applications controls at one time. Pop-up
subplates allow the construction of "dialog boxes" that allow the operator to
focus on one particular aspect of an application's operation and then
dismiss the controls after they have been used. This section describes how
to create pop-up subplates.

Creating a pop-up subplate

In a manner just like the creation of an attached subplate, select the plate
tool which is on the right side of the tool bar at the top. Drag a square in
the drawing area of SAW. The subplate does not need to reside on the
surface of the main default plate, but can be off to the side or partially
overlapping. When you release the mouse you should see a "gift wrapped"
package.

Double click on the subplate package to open it up. Double click on the
plate shown to invoke the plate editor.

The default Window style is shown on the left as "Pop Up". There are
several frame styles for a pop-up subplate which can be seen by choosing
"Next" and "Previous". Change the name of the plate to be "PopUpPlate "
(no spaces), and change the title of the plate to be "Pop Up Test". The Plate
editor should appear like the one below.

94

User Manual for Motion Server and Servo Application Workbench

After selecting the plate style select "Ok". Ascend back to the main plate by
double clicking outside of the subplate. The subplate should become gift
wrapped. Add to the main plate a button. Edit that button's click procedure
to be:

Run the application. Select the button shown on the main plate. The
subplate should pop up. Double clicking on the subplates system menu
should cause the subplate to disappear.

Plates which are configured to be pop-up plates recognize the method
PopUp. When they pop up, these plates perform their setup procedures.
Attached plates perform their setup plate procedures when the plate they
are attached to first appears. Pop-up plates perform their setup procedures
when they pop up. Note that the sequence of setup routines is not speci-
fied. Attached plate setup procedures may invoke before the setup proce-
dure of their parent plate.

3) Closing Under Program Control

Pop-up plates respond to the Close method to disappear. This is necessary
if you choose a frame style for the pop-up plate that does not have a system
menu control. For example, edit the subplate style to be a pop-up plate with
a thick border frame but no title bar or system menu control. Place on the
plate a button with the legend "Ok" and the button procedure shown
below.

95

4Servo Application Workbench Tutorial

Close is a method of the subplate. The default receiver for the Close
method is the plate the button is attached to, in this case the PopUpPlate.
Run the application. Click the main plate button. You should see the thick
framed subplate and the "Ok" button. Select the button to cause the plate to
close.

Popup plates can descend multiple levels however it is usually not good
user interface design practice to have deep structures. Users tend to get lost
in the structure, unable to get back to a place they once were at but can no
longer find. "Flat" structures tend to work better in helping users find
familiar pop up panels.

Pop up plates have all of the capabilities and privileges as the main default
plate. They can have their own locally specified persistent variables, their
own procedures, their own controls, and their own subassemblies.

Summary

Pop-up plates provide a simple way to create dialog type user interface
components, and allows the application developer to conceal seldom used
controls until requested by the user. By using subplates in a pop-up man-
ner, an application can be made simpler to use and less overwhelming
because only the relevant controls for the current operation need be seen at
one time.

96

User Manual for Motion Server and Servo Application Workbench

97

4Servo Application Workbench Tutorial

Lesson 12 - Using Merged Subplates

Objective

The sub-plates described so far are very independent having their own
appearances, drag methods and regions. Merged plates, on the other hand,
are primarily organizational packages. Components in a merged plate attach
to the parent plate almost as if they had been defined on the parent plate.
The only difference is that the component names are prefixed by the
merged plate's name to help prevent name collisions. Merged plates are
very analogous to "include files " in a text-only programming environment.
The objective of this lesson is to show what a merged plate does and when
you would want to use one.

Creating a Merged Subplate

In a manner just like the creation of other subplates, select the plate tool
which is on the right side of the tool bar at the top. Drag a square in the
drawing area of SAW within the area of the default plate. When you release
the mouse you should see a "gift wrapped" package.

Double click on the subplate package to open it up. Double click on the
plate shown to invoke the plate editor. Use the "Next" button near the plate
style to advance through the style options unti you find a plate style named
"Merged ". The appearance of the style shown is that of a set of controls on
top of a graphic surface with no other apparent window features. The Plate
editor should appear like the one below.

Note that when you select the merged style, the Drag procedures are not
listed in the Plate Event Procedure list. Merged plates do not support

98

User Manual for Motion Server and Servo Application Workbench

seperate drag methods because there is no "physical" plate there. Merged
plates, in their unobtrusive manner, allow the drag procedures of the plates
they are children of to operate "through" them. Merged Plates do retain the
setup procedure which is useful for initialization. After setting the plate
style to be merged press the "Ok" button to leave the plate editor.

Adding Graphics to Plates

To illustrate the relationship between a merged subplate and the assembly it
attaches to add a graphic to the subplate, for example, a blue ellipse. Now
ascend to the parent and add a graphic which overlaps the graphic area of
the subplate, for example a red ellipse. Run the application. You should see
overlapping graphics such as is shown below.

The elements on the merged plate behave as if they had been directly
applied to the parent assembly. Yet they remain in a group with their own
internal relationships maintained.

Comparing with Attached Plate

To most easily see the difference between a merged plate and an attached
plate close the application, go back to the subplate editor, and "backup" two
styles with the "Prev" key to specify an attached plate with a thin black
border. Run the application and you should get an appearance similar to
what is shown below.

99

4Servo Application Workbench Tutorial

Note that the circle on the main plate is partially obscured by the subplate.
Attached subplates are responsible for the entire appearance of the screen
that they cover. Accordingly, if an attached subplate has a white back-
ground, that background imposes itself on the assembly obscuring what lies
underneath. Merged plates, on the other hand, do not take responsibility
for a section of the screen but simply add their contents to what is already
in the parent allowing graphics to blend together.

Summary

Merged plates should be used when adding primarily graphic subassem-
blies to an application, or when adding subassemblies which do not specifi-
cally have appearance, such as a collection of procedures for operating a
third party IO board. Use attached plates when you want to delegate a
section of the application's appearance to another part of the program. Use
a pop-up plate when you want a section of the application to come and go
in the course of execution.

100

User Manual for Motion Server and Servo Application Workbench

101

5Chapter

Application Sketches

Purpose
Application Sketches provide examples of certain functions can be per-
formed. Functions such as collecting and displaying real-time data, drag-
ging and dropping figures, and graphically presenting information in
various windows are illustrated with short, simple examples that can show a
particular technique or approach to the problem given the resources of
Servo Application Workbench.

In the same way that a hand drawn "sketch" can convey a concept without
providing a great deal of detail, application sketches convey principles of
application construction. Explore the Application Sketches through the
descriptions written here as well as "dismantling" the sketches provided
with SAW and located in the SERVO directory.

102

User Manual for Motion Server and SAW

103

5Application Sketches

Simple X Axis Storage Scope

Description

This SIMPSCOP.SAW example displays the position of the X Axis verses
time. Pressing the "Go" button causes the data collection to start and
operate for 1 second. The status line indicates the particular point in the
storage scope process of Ready, Collect, and Plot. Pressing "Go" again
causes a new plot to be shown.

How It Works

This example is based on two plates, one for the instrument and one for the
storage scope screen, one button, one text object for the status line, and
three "bumps". The plate contains the following data items:

const BufferSize=100;

The storage scope needs a buffer to hold the position information. This
constant will be used to symbolically refer to the size of the buffer. By
using a constant rather than a number a change to this constant can be
made at a future time (for example to enlarge the collection size) and all of
the uses of that value automatically effected

const SampleDelay=10;

104

User Manual for Motion Server and Servo Application Workbench

The storage scope waits between each collection for the duration of the
SampleDelay. Making this number smaller would cause the scope to collect
finer resolution info but not collect as long a duration.

Buffer:array[1..BufferSize] of Longint;

This buffer is used to store the XAxis positions. Note that the upper bound
is BufferSize, the constant, rather than an explicit number.

Procedure Plate1.Setup;
begin
Status.Writeln(‘Ready’);
end;

The setup procedure for the plate is used to display a "Ready" message in
the text object which has been named Status.

Procedure Plate1.Button3.Click;

var scanner:integer;

begin
Status.Writeln(‘Collect’);
for scanner:= 1 to BufferSize do

begin
delay(SampleDelay);
Buffer[scanner]:=XAxis.ActualPosition;
end;

Status.Writeln(‘Plot’);
Plotter.Clear;
Plotter.Fit(Buffer);
Plotter.Plot(Buffer);
Status.Writeln(‘Ready’);
end;

All of the work occurs in the button's click procedure. First the Status
writes the word "Collect" indicating that the storage scope is now collecting
data. Scanner is a locally declared variable used to loop through the collec-
tion process BufferSize times. This is the advantage of using a symbol for
the constant BufferSize. Both the size of the array (in the declaration) and
the number of times the iterations should occur, are represented by the
same number. If the size of the array is changed as well the number of
iterations will automatically change to keep the two together and avoid a
programming defect. Each time through the loop the program waits for
SampleDelay milliseconds and then assigns the next element in the array to
be the actual position of the x axis. After all of the data has been collected
the status is updated to indicate that the next process is plotting. The plotter
(the name of the storage scope screen) is told to clear, fit the data array, and
plot the data array. The status is then told to indicate "Ready".

105

5Application Sketches

Dragging and Dropping a Square

Description

This DRAG_SQR.SAW example illustrates how to use the BeginDrag,
Drag, and EndDrag plate event procedures to move a graphic around the
window. When not being handled, the rectangle is displayed in a blue color.
When dragged with the mouse, the rectangle becomes red in color and a
red line is drawn from the original location of the square to the current
location. When the mouse is released (dropped) the square assumes the
new position and goes back to a blue color.

How It Works

This example application is composed of a single plate. The plate contains
the following items:

const HalfWidth=10;

The constant HalfWidth is used to indicate how large the square drawn will
be. This is both added to and subtracted from the center position of the
square in each direction to result in coordinates for the square.

SquarePosition:T2Vector;

106

User Manual for Motion Server and Servo Application Workbench

SquarePosition is a 2 dimensional vector used to remember where the
square currently is.

OriginalPosition:T2Vector;

OriginalPosition is a 2 dimensional vector used to remember where the
square was when the drag was started and serves as the other end of the line
indicating drag displacement.

Procedure Plate1.UpdateSquare;
begin
Clear;
DrawSquare(SquarePosition.X-HalfWidth,

SquarePosition.Y-HalfWidth,
SquarePosition.X+HalfWidth,
SquarePosition.Y+HalfWidth);

DrawLine(SquarePosition.X-HalfWidth,
SquarePosition.Y-HalfWidth,

 SquarePosition.X+HalfWidth,
SquarePosition.Y+HalfWidth);

DrawLine(SquarePosition.X-HalfWidth,
SquarePosition.Y+HalfWidth,
SquarePosition.X+HalfWidth,
SquarePosition.Y-HalfWidth);

end;

This UpdateSquare procedure is responsible for drawing the square. The
first method is Clear. Because this is a procedure defined on a plate, Clear
applies to the associated plate. DrawSquare, similarly, is sent to the associ-
ated plate to produce the outline of a square. DrawLine is used to produce
the diagonal lines inside the square. Update causes the appearance to take
effect.

Procedure Plate1.UpdateDragLine;
begin
DrawLine(OriginalPosition.X,OriginalPosition.Y,

SquarePosition.X,SquarePosition.Y);
end;

The procedure UpdateDragLine draws a line from the OriginalPosition to
the SquarePosition and will be used to indicate drag displacement.

107

5Application Sketches

Procedure Plate1.BeginDrag;
begin
SetLineColor(Red);
OriginalPosition:=SquarePosition;
SquarePosition:=MousePosition;
UpdateSquare;
UpdateDragLine;
Update;
end;

BeginDrag sets the line color for drawing to Red, remembers the
OriginalPosition of the square, sets the square's new position to be the
mouse position, and updates the square and the line representing the drag
displacement. Note that assignment between vectors is supported, i.e. all of
the components of MousePosition are assigned to the respective compo-
nents of SquarePosition, for example. In general this is true for record ,
object, and array types.

Procedure Plate1.Drag;
begin
SquarePosition:=MousePosition;
UpdateSquare;
UpdateDragLine;
Update;
end;

Drag assigns the SquarePosition to the current MousePosition and updates
the image.

Procedure Plate1.EndDrag;
begin
SetLineColor(Blue);
SquarePosition:=MousePosition;
UpdateSquare;
Update;
end;

EndDrag puts the color back to blue, updates the square position one last
time and redraws the square.

Procedure Plate1.Setup;
begin
SetCoordinateFrame(-100,-100,100,100);
SquarePosition.Init(0,0);
SetLineColor(Blue);
UpdateSquare;
Update;
end;

108

User Manual for Motion Server and Servo Application Workbench

The plate Setup procedure establishes a coordinate frame for the plate.
These coordinates are used for drawing lines and reporting mouse position.
The SquarePosition is initially set to be the center of the window and the
initial color is Blue. The square is drawn with the UpdateSquare routine.

Questions and Answers

Question: Why didn't the plate name have to proceed the use of plate
functions, such as DrawLine?

Answer: The standard format for communicating to objects is to
indicate the name of the object (the receiver), the operation to
perform (the method) and any parameters that might be used by the
method. Because these procedures are part of the plate itself, the plate
serves as the default receiver for the methods. If you had wanted to
write on a different plate, for example a child plate with respect to this
plate, you would have had to use that plate's name explicitly to
indicate you were not referring to the default plate.

Technique Applications

Dragging and dropping objects is a very convenient way to relate to a
machine when using a computer. Imagine that the EndDrag method
included the statement:

XYAxis.MoveTo(MousePosition).

The coordinate space for the window is set during the Setup routine and
can be set to indicate the count-sized space of the machine. The Window
would then represent the entire range of a 2 axis machine's operation. As
well as the image being dragged and dropped, a servo controlled mecha-
nism can be dragged and dropped. This provides a powerful "endpoint
specification" technique for two dimensional mouse joystick movement. In
a similar manner, the SquarePosition could be constantly updated by a
scheduled task to have the current actual position of the machine shown on
the display as a picture moving in two dimensions. This allows the con-
struction of visual model of the machine's activity with the connection
going both ways.

109

5Application Sketches

Mouse Indicated Selection

Description

This DRAGCIRC.SAW example illustrates how to select one item from
among several for dragging. The 5 circles in the figure can be individually
dragged to a new location by clicking within their radius, dragging to a new
location, and releasing the mouse.

How It Works

This example application is composed of a single plate. The first constant is
NumberOfCircles:

const NumberOfCircles=5;

The constant NumberOfCircles is used to size arrays which contain circle
information and as an upper bound for iterating over the circles in the
application.

There are three arrays in the application:

var CircleLocation:array[1..NumberOfCircles]
of T2Vector;

var RadiusArray[1..NumberOfCircles] of integer;
var ColorArray[1..NumberOfCircles] of integer;

110

User Manual for Motion Server and Servo Application Workbench

These arrays contain the attributes for the circles numbered 1 through 5.
Each circle can have its own location, radius, and color. These arrays are
initialized in the setup procedure of the plate which states the following:

procedure Setup;
 begin
 SetCoordinateFrame(-100,-100,100,100);

 CircleLocation[1].Init(-80,-80);
 CircleLocation[2].init(-30,-30);
 CircleLocation[3].init(0,0);
 CircleLocation[4].init(30,30);
 CircleLocation[5].init(80,80);

 ColorArray[1]:=blue;
 ColorArray[2]:=red;
 ColorArray[3]:=cyan;
 ColorArray[4]:=green;
 ColorArray[5]:=magenta;

 RadiusArray[1]:=10;
 RadiusArray[2]:=15;
 RadiusArray[3]:=8;
 RadiusArray[4]:=15;
 RadiusArray[5]:=10;

 UpdateDisplay;
 end;

The Setup procedure sets initial values for each of the 5 locations, colors
for each of the 5 circles, and radius values. The last call is UpdateDisplay,
which draws the circles. UpdateDisplay has the following description

Procedure UpdateDisplay;

 var scanner:integer;

 begin
 Clear;
 for scanner:=1 to NumberOfCircles-1 do
 DrawLine(
 CircleLocation[scanner].x,CircleLocation[scanner].y,
 CircleLocation[scanner+1].x,CircleLocation[scanner+1].y);
 for scanner:=1 to NumberOfCircles do
 DrawCircleFigure(scanner);
 Update;
 end;

Scanner is declared to be a local variable. This will be used to iterate over
the five circles. The first instruction clears the plate so as to have a clean
drawing surface. Four lines are drawn connecting the center points of the 5

111

5Application Sketches

circles together. Five circles are then drawn by the routine
DrawCircleFigure. This routine has the following description:

Procedure DrawCircleFigure(index:integer);

 const ShadowOffset=3;
 var Radius:integer;
 var Location:T2Vector;

 begin
 Radius:=RadiusArray[index];
 Location:=CircleLocation[index];
 SetBodyColor(black);

 {draw shadow}
 DrawEllipse(
 Location.X-Radius+ShadowOffset,
 Location.Y-Radius-ShadowOffset,
 Location.X+Radius+ShadowOffset,
 Location.Y+Radius-ShadowOffset);
 SetBodyColor(ColorArray[index]);
 DrawEllipse(
 Location.X-Radius,
 Location.Y-Radius,
 Location.X+Radius,
 Location.Y+Radius);
 end;

The circle being worked on is indicated by the index. The radius and
location are loaded from the corresponding arrays. The shadow is then
drawn by offsetting the location of the circle and using a black color. The
circle itself is then drawn using the color of the circle found in ColorArray.

The BeginDrag method is used to determine which of the 5 circles is being
selected for movement. The BeginDrag procedure has the following
description:

procedure BeginDrag;

 var DeltaVector:T2Vector;
 var Length:integer;
 var MinimumDistance:integer;
 var scanner:integer;

 begin
 for scanner:=1 to NumberOfCircles do
 begin
 DeltaVector:=

MousePosition-CircleLocation[scanner];
 Length:=DeltaVector.Length;
 if scanner=1 then

112

User Manual for Motion Server and Servo Application Workbench

 begin
 MinimumDistance:=Length;
 MoveIndex:=1;
 end
 else if Length < MinimumDistance then
 begin
 MinimumDistance:=Length;
 MoveIndex:=scanner;
 end;
 end;
 CircleLocation[MoveIndex]:=MousePosition;
 UpdateDisplay;
 end;

For each of the cricles the DeltaVector is calculated, which is the vector
pointing from the circle to where the mouse clicked. This shortest length
and corresponding circle index is then remembered to identify the nearest
circle. The location of the nearest circle is updated to be the mouse position
and the display is updated to show this change. The currently selected circle
is remembered in the MoveIndex. The Drag procedure uses this to con-
tinually update the circle location as the mouse is dragged:

procedure Drag;
 begin
 CircleLocation[MoveIndex]:=MousePosition;
 UpdateDisplay;
 end;

113

5Application Sketches

Passing Object Parameters

Description

PASS_OBJ.SAW illustrates how parameters to functions can be objects. In
this example three different plates are passed as parameters to a function
which performs a drawing operation. Each plate has its own color, and each
can independently zoom in on the image that has been placed into it.

How It Works

This example is composed of four plates, 5 bumps, and one button. The
plate contains the following procedure:

Procedure Plate1.PlaceDrawingIn(
var aPlotter:TPlate);

var scanner:integer;

begin
aPlotter.Clear;
aPlotter.SetCoordinateFrame(0,0,200,200);
for scanner:=1 to 20 do

aPlotter.DrawLine(scanner*10,0,
200-(scanner*10),scanner*10);

aPlotter.Update;
end;

114

User Manual for Motion Server and Servo Application Workbench

This procedure clears the plotter passed as a parameter, sets the coordinate
frame for that plotter, and then places into the plotter 20 lines in a sweeping
pattern. After the lines have been drawn the plotter is asked to update its
appearance. Note that an object, such as a plotter, can be passed as a param-
eter. The variable aPlotter serves as a reference to the plotter in the caller.
This is called pass-by-reference.

The following setup procedure establishes which plotters are which colors:

Procedure Plate1.Setup;
begin
Plotter1.SetLineColor(red);
Plotter2.SetLineColor(blue);
Plotter3.SetLineColor(black);
end;

The drawings are made by the button which has the following click proce-
dure:

Procedure Plate1.Button5.Click;
begin
PlaceDrawingIn(Plotter1);
PlaceDrawingIn(Plotter2);
PlaceDrawingIn(Plotter3);
end;

Questions and Answers

Question: What's the difference between "call-by-reference" and "call-
by-value"?

Answer: Pascal parameters to procedures and functions are normally
call by value. What this means is that the procedure or function
operates on a copy of the variable provided by the call. If the
procedure or function assigns a new value to the variable that change
is not reflected in the variable found in the callers "scope".
Parameters can be thought of as temporary variables. By placing the
word " var " in front of a procedure or function parameter you are
indicating that the parameter is to be "called-by-reference". This
means that you are not working with a copy, but changing and
effecting the object that was provided by the call. In general objects
that you intend to modify should be passed as var call-by-reference
parameters since your changes would not take effect with a call-by-
value parameter. In this case it doesn't make any difference since
TPlotters are almost completely indirect anyway.

115

6
Pas-
cal
Lan-
guage
Sys-
tem

Chapter

6) The Douloi Pascal Language

Introduction to the Language System

Purpose

Motion Server through SAW uses a procedural language similar to
Object Based Pascal to express behavior and relationships in a mo-
tion control application. This language system follows many of the
principles of Pascal allowing developers with pascal background to
feel at home with a familiar tool. The purpose of this section is to
describe the capabilities and use of the language. Application of the
language is best understood by working through the tutorial indi-
cated in the last section. This section may be helpful, when encoun-
tering an unfamiliar construct, for understanding that construct
through a more detailed explanation than is provided in the tutorial.

Throughout this section there will be italic paragraphs that provide a
detailed explanation of related principles to a topic being covered.
These paragraphs are provided to answer questions advanced devel-
opers may have but are entirely optional. If you find the initial italic
paragraphs helpful, read future ones, and if not skip future ones.

Language Overview

Motion Server through SAW may be programmed through the
provided Object Based Pascal language referred to as Douloi Pascal.
The instructions you write are compiled into 32 bit 386 object code
for quick execution. During this compilation step certain program-
ming errors might be detected. SAW attempts to provide you with an
opportunity to correct those errors by presenting the offending
instructions in a suitable editor for you.

Douloi Pascal is strongly typed which means that everything you say
must be clearly explained. Strongly typed languages generally do not
�help� you by automatically creating variables or accepting as correct
different types of parameters for a function call but rather insist on
issues being clear up front.

116

User Manual for Motion Server and Servo Application Workbench

Question: Why is the language described as �Object Based� rather than
�Object Oriented�?

Object oriented languages are making important inroads as industrial tools,
primarily through C++ . The definition of an object oriented language is
not completely standardized however the general consensus includes at-
tributes such as polymorphism, encapsulation, and inheritance.

Douloi Pascal does contain the concept of an object , an aggregate of state
information with related operations to alter that state. Douloi Pascal uses
the familiar variable.method syntax rooted in record field access which has
become standard for languages such as Visual Basic , C++ and Turbo
Pascal . However Douloi Pascal does not meet the �standard� criteria .

Although there is object structure this structure is publicly accessible and not
�private� limiting the degree of encapsulation which may be claimed for the
language.

Generally, polymorphism requires dynamic allocation so that a single
indirect data item could refer to different objects. Douloi Pascal does not
support dynamic allocation so there is no polymorphism possible.

Although many of the system objects are internally constructed with inherit-
ance relationships there is no inheritance mechanism available at the
application level, i.e. you cannot create two object types and have one be a
descendent of the other.

The literature�s common response to languages which display some object
oriented behaviors but not these three in particular is to refer to those
languages as Object Based rather than Object Oriented.

Question: Why was Object Based Pascal Chosen?

Douloi Automation believes that strong typing and as much compile-time
error detection as possible is needed, particularly for motion control applica-
tions. It is not appropriate to discover programming errors at run time in
procedures with names like AbortMotion . Procedures such as these need to
work since machine and operator safety can be influenced by program
correctness. Object principles effect the architecture of the language very
much. Douloi Automation believes the leading language system that
provides very strong type checking, Object characteristics , and industrial
familiarity is Object Pascal.

Question: What are the primary differences between Object Pascal (such as
Borland's Turbo Pascal for Windows) and Douloi Pascal?

117

6Douloi Pascal Language

Douloi Pascal is designed with fundamental trade-offs primarily related to
its use with real time motion applications. The following list of differences
reflects these trade-offs.

Douloi Pascal generates 32 bit 386 object code for fast program execution
speed. Most compilers need to generate code compatible with 8086 and
80286 machines and accordingly generate 16 bit code.

Douloi Pascal does not provide dynamic data management . All data
structures are defined as either global or local (stack based) at compile time.

Douloi Pascal does not support inheritance at the application level

Douloi Pascal does not support local procedures (i.e. procedures declared
within the bodies of other procedures. If you are a C or C++ programmer
you won�t miss this since those languages don�t support local procedures
either).

Douloi Pascal provides built-in support for multitasking. Multitasking is
important for motion control application development.

Douloi Pascal has limited code and data sizes. Data is limited to approxi-
mately 70K maximum data memory (16KBytes default) and Code to
approximately 256K bytes. Although this may seem incredibly small bear
in mind the following points:

(1) Borland�s original release of Turbo Pascal generated programs with
only one code segment and one data segment (approximately 60K bytes
each) but was still an extremely useful tool.

(2) By definition a �real time� application must be quick. There simply is
not enough time to execute a large amount of code in a real time applica-
tion.

(3) Because all of the user interface for SAW is done through Windows in
standard mode this data and code space is only needed for what is critically
real time. Windows memory , up to 16 megabytes, is still available for
windows controls , bitmaps, graphics etc. Much of the functionality of a
SAW based application is through behaviors of these objects separate from
the real time code which consumes none of this space.

Douloi Pascal allows object procedures and functions to be elaborated
directly inside the object type definition.

118

User Manual for Motion Server and Servo Application Workbench

Douloi Pascal does not support sets directly, although ordinal constants can
be used to simulate set behavior .

Douloi Pascal uses "null terminated" strings since this format is most
standard for DLL compatibility. The default string length is 32 characters
(not 255) but strings of various lengths can be specified.

Formats and Conventions

Douloi Pascal, like pascal in general, is a �free format� language. You
are not obliged to complete a single command on one line. It does
not matter where the command begins, i.e. you do not have to start
in column 1. In order to make code as readable as possible, however,
it is a good idea to follow a format guideline. There are many differ-
ent conventions religiously defended by as many corresponding
users. The chapter titled "Program Formatting" contains a particular
format used by Douloi Automation and encountered in the demo
programs . Other conventions are described in books on Pascal
programming. Which convention you use does not matter however
using some convention consistently does matter. Use whatever
convention makes the most sense to you.

Because commands can start on one line and end on another you
need to be explicit about where a command actually ends. In Pascal
the end of a command or �statement� is indicated with a semicolon.
The semicolon serves to both clarify possibly ambiguous cases and to
�check up on you� to insure that what you believe to be a complete
statement is what the compiler also believes to be a complete state-
ment.

Douloi Pascal supports and invites the use of symbolic names . These
symbols are used to represent your problem and the corresponding
solution. The clarity of a program and its ability to be correctly
written the first time, corrected, and maintained is dramatically
effected by the choice of symbolic names. The proper description of
a problem is half of the distance to having a solution and much of the
description occurs in the naming process of the operations and
information in the program. If you are unable to meaningfully name
a variable this may be a strong indication you don�t fully understand
the problem. There is no run-time penalty for lengthy variable names
. There is no merit to long names for the sake of simply being long
however long names are sometimes required in order to be clear.
The only mainstream method of keeping tight correspondence
between documentation about a program and the program itself is to

119

6Douloi Pascal Language

have the program be self-documenting, i.e. writing the program with
such expressive symbol naming that to read the program is to read a
description of the program.

Douloi Pascal allows symbols to be up to 60 characters long. Symbols
are generally composed of letters, numbers, and the underscore
character but should not contain other characters (i.e. no spaces).
There is no distinction made between capital and small letters. One
symbol naming school of thought is to have multiple word symbols
separated by the underscore as if it was a space, for example:

drill_head_home_position

Another school of thought is to use capitalization to emphasize
where a new word begins, for example:

DrillHeadHomePosition

The second approach is used for predefined objects and methods in
Douloi Pascal so your program may appear more consistent using the
second method. Either choice is fine.

Another industrially encountered convention used by Douloi Pascal
is a capital �T� before symbols that are type definitions, i.e. the
predefined 4 dimensional vector type is called �T4Vector�. The
leading capital T is a clue that the symbol has something to do with
type definitions. Again this is optional but you may choose to con-
form to the standard for the sake of consistency.

Douloi Pascal supports curly bracket comments. Anything inside
curly brackets is disregarded and may be used to provide notes to
describe the nearby program. Comments are not nestable, i.e. the one
thing a comment cannot contain is another comment. The following
program fragment indicates how a comment might be used:

procedure RaiseDrillHead;
 {This procedure is used to move the head clear of
 the table and should be called before any table
 movement is performed}
 begin
 ZAxis.MoveTo(DrillHeadClearancePosition);
 end;

120

User Manual for Motion Server and Servo Application Workbench

121

6Douloi Pascal Language

Variables

Purpose

The language system�s purpose is to help you organize a solution to
your problem, and a basic need in getting organized is having a place
to put things. Variables provide the places where information about
your application is put. Douloi Pascal provides simple variables,
aggregate variable mechanisms and arrays to help provide appropriate
data structures to store information.

Fundamental Types

Variables come in different shapes and sizes (known as �Types�) to
accommodate the different shapes and sizes of information that you
need to put somewhere. The fundamental types provided by Douloi
Pascal include:

Boolean

Booleans are able to remember yes/no information. Boolean variables
are helpful for decision related information and often have names
such as

PartHasBeenRemoved
ProcessHasFinished
PointIsSelected

Integer

Integers are scalar numbers that have a range of -32767 to 32768.
These are typically used for �small� numbers and use 16 bits of
storage. Integers are often used for iteration and quantities such as:

NumberOfPartsRemaining
DataBufferIndex
CurrentMotorTorque

122

User Manual for Motion Server and Servo Application Workbench

Longint

Longint, or Long Integers, are 32 bit quantities and may have a range
of about -4 billion to +4 billion. Longints are often used for position
information expressed in counts (which can cover this range).
Longints might have names such as:

RegistrationPosition
InputCapturePosition
DistanceToGo

String

Strings are variables which can contain words. Douloi Pascal sup-
ports variable length strings with the default being 31 characters
although you can specify different sizes when you describe the
variable. Examples of string variables names might include:

PartName
ErrorMessageText
LastRecordedCommand

Single Precision IEEE Floating Point Reals

Single precision reals are 32 bit variables which contain about 7 or 8
signficant digits of resolution over a range of 10^-37 to 10^38.
Floating point operations in single precision reals are available even if
your machine does not have a math coprocessor. The floating point
routines operate about one sixth the speed of a 32 bit longint multi-
ply so you do incur a speed penalty for using floating point. If you
need more resolution or more speed the best approach is to have a
math coprocessor which is supported as a "calculator" for use by
application programs.

Double Precision IEEE Floating Point Reals

Double precision reals are 64 bit variables which contain about 15 or
16 significant digits of resolution over a range of 10^-307 to
10^308. Infix notation floating point operations in double precision
reals are available even if your machine does not have a math
coprocessor. However the math coprocessor is much faster if you
have one. Double precision reals are provided primarily for the
benefit of DLL connectivity since some DLLs require parameters of
this type. For real-time calculations, however, it is much better to use
the math coprocessor or to user single precision or integer formats
for your calculations.

123

6Douloi Pascal Language

Usage

Variables are most easily used when given meaningful names and
meaningful structure. You express your desire to have a variable
through a variable declaration. Many of the variables you�ll use will
be �plate� variables created with the �plate editor� in Servo Applica-
tion Workbench. The plate editor allows you to add, delete, and
change variables with a dialog box and select the type you would like
the variable to have from a list. You may also declare variables in
procedures and functions for use locally within those procedures and
functions using the �var� statement. This statement has the form:

var <variable name> : <variable type> ;

After the word �var� is a space followed by the name you would like
to use for the variable. After the name (no space required) is a colon,
and after the colon (no space required) is the variable type followed
by a semicolon (which means �end of statement�). Example variable
declarations include:

var MoveDistance:longint;
var FirstTimeThroughProcedure:boolean;
var TorqueValue:integer;
var UserMessage:string;

Variable names must not have any spaces (although you may use the
underscore character) and in general should only be composed of
letter and numbers. Variable names may include numbers but may
not begin with numbers.

Aggregate Types

You may use a �desk organizer� in your desk drawer. A desk orga-
nizer contains various compartments for holding different types of
things commonly found in a drawer such as paper clips, pencils etc.
The desk organizer is a single, integrated item that has internal
structure of various compartments, each compartment providing a
suitable place for a particular aspect of its storage purpose. In a simi-
lar manner most high level programming languages allow the con-
struction of such informational �desk organizers�, data structures that
contain �compartments� where information can be stored while
retaining a relationship with the whole. Douloi Pascal supports
aggregate structures through Record and Object type declarations.

124

User Manual for Motion Server and Servo Application Workbench

The creation of new Record and Object structures will be deferred
until the Advanced Language section however the use of predefined
record and object types will be reviewed here. Predefined aggregate
types include:

T2Vector........... 2 dimensional vector
T3Vector........... 3 dimensional vector
T4Vector........... 4 dimensional vector
T5Vector........... 5 dimensional vector
T6Vector........... 6 dimensional vector

T1Axis............. single axis of motion
T2Axis............. 2 coordinated axis of motion
T3Axis............. 3 coordinated axis of motion
T4Axis............. 4 coordinated axis of motion
T5Axis............. 5 coordinated axis of motion
T6Axis............. 6 coordinated axis of motion

TButton............ Windows Button Control (SAW only)
TEdit.............. Windows Edit Control (SAW only)
TFile.............. DOS File (SAW only)
THPGLFile.......... HPGL File Interpreter (SAW Only)
TListBox........... List/Combo box style control (Saw Only)
TPlate............. Assembly "Base" for applications (SAW only)
TPrompter.......... Modal dialog for operator (SAW only)
TText.............. Output text/display (SAW only)

The first group are different types of vectors and are collectively
referred to as TNVector. In actual usage the �N� in TNVector is
replaced with a number between 2 and 6 representing the dimension
of the vector. These vectors contain vector �component� compart-
ments which are longint types. The names of the compartments are
X,Y,Z,U,V,W if you have all six. The language definition for a
T3Vector, for example, is:

Type T3Vector=object
X:longint;
Y:longint;
Z:longint;

{object procedures}
end;

A �compartment� or �field� of an object or record is indicated with a
period after the variable name followed by the field name. The
period indicates that the name following is specifically related to that
variable. Field names can indicate component storage areas in an
aggregate variable such as a record or object. For example, to assign

125

6Douloi Pascal Language

the Y component of a variable named HomePosition of type
T3Vector you could use the command:

HomePosition.Y:=500;

In pascal the assignment operator is a colon followed by an equals
sign indicating that the expression on the left is to receive informa-
tion from the right side.

�Records� contain only storage areas. �Objects� contain storage areas
just like records and as well type specific procedures and functions
which can operate on that information.

The second group of objects listed are axis groups ranging from
T1Axis, a type to represent a single axis of motion, up through
T6Axis, a type to represent a 6 axis coordinated group. These axis
group types are collectively referred to as TNAxis types where the
�N� in TNAxis is replaced by a number between 1 and 6 in actual
usage. You might create a variable to represent a 2 axis positioning
table with the command:

var PositioningTable:T2Axis;

Now you have a variable named PositioningTable which can be
given commands. The first command necessary is an initialization
command to associate that variable with actual axis in the system, for
example:

PositioningTable.Init(XAxis,YAxis);

XAxis and YAxis are predefined variables of type T1Axis which
correspond to the physical X and Y axis in the servo system. Now the
PositioningTable can be given a command to move, for example:

PositioningTable.SetServo(On);
PositioningTable.MoveBy(20000,30000);

Detailed information about the predefined variables and operations
supported by TNVectors and TNAxis can be found in the help
system.

126

User Manual for Motion Server and Servo Application Workbench

The remaining predefined types are for use specifically with Servo
Application Workbench. Some of these types are declared graphically
while others are declared with the �var� keyword. In general these
other types provide Windows components that can be manipulated
by the programs you write to display information and create program
behaviors.

Arrays

Up until this point variables have been named symbolically and their
access has been explicit on the part of the programmer. Arrays are a
tool that give the program itself the ability to specify what storage
area will be used to save information.

Arrays are linear arrangements of variables of a particular type. When
referring to information in an array you refer to the name of the array
itself and to which particular item in the array you are concerned
with, for example the first one, or the third one. The location of the
storage area of interest can be expressed numerically giving the
program the ability to indicate a desired location.

Arrays may be specified in SAW as plate variables through a dialog
box such as shown below:

Any variable has the capacity to be part of an array. When defining a
variable you can check the box indicating the variable represents an
array and indicate the array bounds. Douloi Pascal allows the lower
bounds and upper bounds of an array to be set. An example of an
array being declared is shown below. Note that the bounds may be
symbolic constants.

The C language, as I understand it, compels the lower bound to be 0. The

127

6Douloi Pascal Language

reason for having the lower bound be 0 is one less adjustment of the index
before accessing the array in the assembly language code which is generated. The
Douloi Pascal Compiler, however, offsets the array's basis when referencing the
array eliminating this overhead. Accordingly there is no run time penalty for
using a non-0 lower bound.

Arrays of longints are frequently used as �storage scope buffers� to
collect position or servo information at the controller sample rate to
be later plotted showing step response results or other information.

To create a variable array start with the VAR keyword and follow it
with the name of the array. Following the name place a colon, as you
would for a normal variable declaration. Following the colon place
the keyword �array� followed by a left square bracket, the lower
bound either as a number of constant, two periods, the upper bound
as a number of constant, a right square bracket, the word �of� and
then the type of the array�s components followed by a semicolon. An
example of an array declaration might be:

var DataBuffer:array[1..DataBufferSize] of longint;

128

User Manual for Motion Server and Servo Application Workbench

129

6Douloi Pascal Language

Assignment

Purpose

Having a place to put everything is a good start for getting organized,
however no progress is made until those storage areas get used.
Assignment is one of the main ways information gets placed into a
storage area. This section explains assignment for simple types and
the implications of assignment for advanced types.

Assignment of Simple Types

In Douloi Pascal the assignment operator is a colon followed by an
equals sign. For example the variable DrillDepth, a longint, might be
assigned with the statement:

DrillDepth:=500;

The semicolon at the end of the statement indicates that the pro-
grammer believes the statement to be complete.

Assignments to single or doubles types allows the use of a period to
indicate the decimal point, i.e.

FractionalUserVariable:=6.5;

Strings may be assigned by using single quotes, i.e.

MachineStatus:=’Ready’;

Upper and lower case letters in string constants are kept distinct.
Note that although the hardcopy of the manuals (or even this page)
may show a �back quote� for the leading quote this is a result of the
printer that produced the documentation. The intended symbol is
always the conventional single quote, most often found under the
double quote to the right of the semicolon and the left of the enter
key.

130

User Manual for Motion Server and Servo Application Workbench

Variables may be assigned from another variable, i.e.

CurrentPosition:=LastPosition;

Variables of the same type may always be assigned. Variables of
different types are converted automatically if the assignment falls into
the following cases:

A longint can be assigned from an integer. The integer always fits. An
integer may be assigned from a longint however some information
may be lost. It is the your responsibility to make sure you are not
assigning a value beyond the integer range. Singles and doubles may
be assigned to integers only after using the �ROUND� operation, i.e.

MyInteger:=Round(MyRealSingle);

Integers and longints may be assigned to singles and doubles how-
ever it is the programmer�s responsibility to insure they will properly
fit into the range of the chosen floating point type. Doubles can hold
most anything, however singles will lose information if a very large
longint is assigned.

Assignment of Aggregate Types

Aggregate types are often assigned on a component by component
basis. For example a variable named HomePositionVector of type
T3Vector might be assigned with the statements:

HomePositionVector.X:=500;
HomePositionVector.Y:=600;
HomePositionVector.Z:=700;

Because this is tedious most object aggregates include procedures
that consolidate assigning all of the object component values into a
single statement, usually named Init. The same 3 dimensional vector
from the previous example may be assigned in a single statement:

HomePositionVector.Init(500,600,700);

131

6Douloi Pascal Language

Question: Is Init a constructor?

Answer: Generally no, Init is a conventional procedure. Because Objects in
Douloi Pascal are not dynamic and do not support inheritance there is no
virtual method table. Procedure links are established at compile time. Accord-
ingly Douloi Pascal does not use constructors or destructors for dynamic alloca-
tion or VMT needs. However there are some SAW Objects, such as
TPrompter and TFile, which when initialized in a SAW program result in
the creation of a dynamic object in the Windows environment.

When used in assignment statements all of the components of the
source object or record (on the right side) are copied into the corre-
sponding components of the destination (on the left side). For
example if the following symbols were 6 dimensional vectors of type
T6Vector this statement would copy 6 longints:

TaughtPositionVector:=CurrentPositionVector;

When records or objects are copied in this manner there is never any
type conversion. Records and objects in an assignment statement
must be of the same type.

132

User Manual for Motion Server and Servo Application Workbench

133

6Douloi Pascal Language

Constants

Purpose

Many different tools are needed in the process of getting the problem
and solution organized. This section describes the role constants play
in program readability and maintenance.

Description

Constants provide a way to give a symbolic name to a piece of infor-
mation that you do not intend to change in the course of a program�s
execution. For example if you are writing software for a machine that
produces 50 parts in every batch of parts it manufacturers you might
create the constant:

const PartsInBatch = 50;

Constants can also be created as plate symbols using the Constant
Editor such as shown below.

The equals sign is used instead of the assignment operator to convey
that these two things, PartsInBatch and 50, are equivalent. There is
no �copy� activity that occurs in the program at run time. Using a
constant is just as efficient as using the explicit number in terms of
the resulting code however the program is much easier to under-
stand. The following statement may appear in the application pro-
gram:

if NumberOfPartsMade = PartsInBatch then......

It�s quite clear that the decision has something to do with the batch
being finished. If the number 50 was there instead that would not be
as clear.

134

User Manual for Motion Server and Servo Application Workbench

The place where the use of constants makes a dramatic difference is
when you are told that there�s been a change and the number of parts
in a batch is now 75. The number of parts in a batch may be used
many times and in many places throughout the program. If you has
used the explicit number 50 and were told that the number changed
from 50 to 75 you would need to search through your program
finding all of the 50s, making sure that the particular 50 related to the
number of parts in a batch (as distinct from some other quantity
which might happen to also have the value of 50) and make the
change. Subtle problems can occur if you missed one of the 50s
somewhere. There�s also a tendency for 49s and 51s to appear, par-
ticularly in loop definitions, and these are easily missed. However if
you have a constant named PartsInBatch all you need to change is
the constant declaration:

const PartsInBatch=75;

All of the places that were concerned with the number of parts in a
batch are now automatically updated. The places where you might
have had 49s or 51s now become PartsInBatch+1 and PartsInBatch-
1. It may appear that this is less efficient because of the additional
operations taking place to calculate that value however this is not a
problem. The compiler is aware that the expression PartsInBatch+1
is composed of values all known at compile time so the compiler
itself performs the calculation once creating the 51s and 49s (or 76s
and 74s if the PartsInBatch is 75). Using constants allows you to
centralize a machine attribute and derive other values from it to
manage application information. If a numerical value is used in more
than one place for the same meaning use a constant to insure these
two values �stay in synch� in the event of a future change.

An important place for constants is in array bound declarations.
Arrays are often used to store information about the servo system
during data collection. It is very important that an array is not �over-
filled�. Accordingly whatever procedure is filling the array should
use constants to indicate the range of filling which are the same
constants used to define the array size. This insures that as the array
size is altered that the filling operation is automatically altered as well
to insure consistency. Note that symbolic names may be typed into
the lower bound and upper bound fields in the variable declaration
dialog box allowing this technique to be used with SAW.

135

6Douloi Pascal Language

Operators

Purpose

Beyond merely shuffling items from one place to another, organiza-
tion is accomplished by combining and operating on items to pro-
duce new items. This section describes common infix operators used
in Douloi Pascal.

Operators for simple types

Douloi Pascal supports different infix operators. Infix means that
expressions are written in a �conventional math� sense with the
operator in between the two parameters it relates to. For example to
add two variables and assign them to a third is done with:

Sum:=Operand1+Operand2;

Spaces are not required between the operator and the operands. A
frequently encountered need is to increment a variable by one. In
pascal this is usually done with the command:

NumberOfPartsCompleted:=NumberOfPartsCompleted+1;

Question: Isn�t that a lot of overhead for a simple increment? Does Douloi
Pascal provide an INC instruction to tell the compiler just to generate an
assembly level INC?

Answer: The compiler in Douloi Pascal recognizes that the destination of this
operation and the source are the same, and that the amount being added is one.
In this case the compiler will directly generate a 386 INC instruction of a size
suitable for the integer or longint type.

Infix operations include

+ Addition operator

- Subtraction operator

136

User Manual for Motion Server and Servo Application Workbench

* Multiplication operator

div integer division

/ floating point division, i.e. fractional

mod remainder operator for integer division

and logical and operator

or logical or operator

xor logical exclusive or operator

Operations may be grouped with parenthesis to explicitly control
precedence, i.e.

Answer:=(2+(4*6));

would be a different answer from:

Answer:=((2+4)*6);

Douloi Pascal automatically holds multiplication and division at a
higher precedence than addition and subtraction however it�s best to
be explicit.

Douloi Pascal supports compile time evaluation of certain constant expressions.
The previous examples would have resulted in only a run-time assignment of
the answer into the respective variables.

137

6Douloi Pascal Language

Operators for aggregate types

A unique attribute of Douloi Pascal is support for infix operations on
aggregate types. Aggregates (i.e. objects and records) respond to infix
operators by performing the operator on a component by component
basis for each component in the structure.

Motion control applications often involve calculations having to do
with space. Vectors, and specifically the TNVector types, are pro-
vided to represent n dimensional space. Having infix operators
between objects means that vector addition and subtraction are
directly supported. For example consider:

NewPositionVector:=OldPositionVector+DeltaPositionVector;

The variables NewPositionVector, OldPositionVector, and
DeltaPositionVector can be declared as vectors of any dimension
supported. This statement performs vector addition to create a new n
dimensional location. Note that all of the variables need to be of the
same dimension, i.e. infix operators when used with aggregates only
work if the aggregates are exactly the same type.

Note that infix operators on some aggregates may be meaningless, for
example adding together the XAxis and YAxis produces a meaning-
less T1Axis. Also note that vector multiplication is not supported in
the �dot� or �cross product� sense, however it is supported in the
component-by-component sense.

138

User Manual for Motion Server and Servo Application Workbench

139

6Douloi Pascal Language

Procedures and Functions

Purpose

Organizational activities speed up when you are able to put things
into bags and manage the enclosed group as a single item. Procedures
and Functions provide �bags� which can contain statements orga-
nized to accomplish a particular objective. Once organized this
behavior can then be requested from many different points in a
program to provide a specialized capability. Procedures are like
subroutines in basic and �void� functions in C. Functions are proce-
dures which return an answer.

Procedures

The syntax of a procedure without parameters is:

procedure <procedureName>;

<optional local variables>

begin
<statements>;
end;

The first word is �procedure�, a keyword indicating that a procedure
is being defined. Following is a space and the name of the procedure
followed by a semicolon. At this point you may choose to include
�local variables�. Local variables are temporary storage areas which
remain intact only for the duration of this particular execution of the
subroutine. Following any local variables is �begin� followed by
statements followed by �end�.

140

User Manual for Motion Server and Servo Application Workbench

If you are using SAW you are provided with a procedure template
when you create new plate procedures. An example template looks
like:

The following procedure moves the XY axis in a square:

Procedure MakeSquare;
begin
XYAxis.MoveBy(1000,0);
XYAxis.MoveBy(0,1000);
XYAxis.MoveBy(-1000,0);
XYAxis.MoveBy(0,-1000);
end;

Procedure MakeManySquares;
begin
XYAxis.MoveTo(0,0);
MakeSquare;
XYAxis.MoveTo(2000,2000);
MakeSquare;
end;

Now whenever you need to make a square you can simply say
MakeSquare rather than the individual statements. MakeSquare has
accomplished several things. It has �bagged� the four movement
instructions so that now the behavior can be accomplished with one
statement instead of four. It has also �raised the level of abstraction�.
Now instead of describing the problem in terms of movements, the
problem can be described in terms of �squares�, a higher abstraction
description of a problem. Procedure names are excellent places to
convey meaning about program behavior. Take the time to make
descriptive and meaningful procedure names.

141

6Douloi Pascal Language

What if you want to make squares of different sizes? Procedures are
able to take parameters. The syntax of a procedure with parameters is:

Procedure <ProcedureName> ({var}<ParamName>
:Type{;another...});

To include parameters follow the procedure name with a left paren-
thesis. After the parenthesis comes a description of the parameter. If
the first word in the description is �var� the parameter will be ac-
cessed using call-by-reference. If �var� is not the first word the
parameter will be call-by-value. The distinction between call-by-
reference and call-by-value is important and will be discussed in the
following section. The name of the parameter follows, a colon after
the name and a type after the colon similar to a conventional variable
declaration. You may have multiple parameters however you must
separate them with semicolons. The right parenthesis completes the
description of the parameter list and a semicolon follows just as it
had in the original procedure definition. Usually pascal languages
allow you to specify multiple parameters of an identical type with
commas separating consecutive names. Douloi Pascal requires that
you explicitly provide the type of each parameter, even if it is the
same as its neighbor.

The previous example can be rewritten to produce squares of various
sizes:

Procedure MakeSquare(aSideLength:longint);
begin
XYAxis.MoveBy(aSideLength,0);
XYAxis.MoveBy(0,aSideLength);
XYAxis.MoveBy(-aSideLength,0);
XYAxis.MoveBy(0,-aSideLength);
end;

Procedure MakeManySquares;
begin
XYAxis.MoveTo(0,0);
MakeSquare(1000);
MakeSquare(2000);
MakeSquare(3000);
end;

142

User Manual for Motion Server and Servo Application Workbench

The parameter aSideLength is provided in the calling routine with
explicit numbers and produces 3 squares of different sizes. The
parameter could also have been provided as an expression or function
result.

Functions

Functions are similar to procedures with the additional feature of
returning an answer. The syntax of a function is similar to a proce-
dure however the keyword is �function� instead of �procedure�, and
following the declaration is a colon, type name, and semicolon
instead of just the semicolon, i.e.:

function <name>{(<parameters>)}:<type>;

The result of a calculation can be returned by the function and used
by the caller. To return a value perform an assignment statement to
the function name inside the body of the function. To use the answer
include the function name anywhere you might use an expression.

An example function might square a parameter:

function SquareOf(aNumber:longint):longint;
begin
SquareOf:=aNumber*aNumber;
end;

procedure ReportSquares;
begin
Prompter.Writeln(‘Square of 4 is ‘,SquareOf(4));
Prompter.Writeln(‘Square of 8 is ‘,SquareOf(8));
end;

If while inside a function body the function name is used as a source
expression, i.e. on the right side of an assignment statement, Douloi
Pascal simply interprets the function name as a temporary variable
that responds with the value last assigned to it. Douloi Pascal will not
perform recursion as would normally be the case with other pascal
implementations. Douloi Automation recommends against using the
function name in this way since it develops non-standard habits for
you. Use a local variable instead.

143

6Douloi Pascal Language

Do not forget to assign the function value to be something! In gen-
eral pascal compilers do not check to insure that the value of a func-
tion was ever assigned. Douloi Pascal does not support return types
of arrays, strings, or aggregate types however you can access and
modify such structures from a procedure or function by passing
them as call-by-reference, or "var" parameters.

Call-By-Value and Call-By-Reference

Call-by-value and call-by-reference are two different parameter
passing models supported by Douloi Pascal. Which model is appro-
priate to use depends on what you are doing.

Call-by-value is the default parameter passing model. In this case,
copies of the parameters are provided to the calling routine which
regards the parameter names as temporary variables. The routine can
freely read or write to these parameter variables and cause no effect
on the variables that were used in the calling routine to fill in the
parameters. The only way for an answer to get back to the caller
when using call by value is through a function return result. This
approach is generally regarded as the safest way to go because there is
less of a �connection� between the activities of the function and the
information in the caller.

Call-by-reference is a technique where a �pointer� to the information
in the caller is given to the function. The �var� keyword indicates
that the parameter is being passed as a referenced piece of informa-
tion in the caller. All of the �referencing and dereferencing� is
handled automatically by the compiler. When you change the value
of a parameter that is being assessed through call-by-reference, the
value of the parameter in the caller changes. It�s as if the single
variable in the caller has two names, its original name and the param-
eter name in the called function. Call-by-reference allows informa-
tion to travel from the function back to the caller in a way besides a
function return result. For example a procedure can have a var
parameter and through assignment to that parameter change the
value of a variable in the calling routine. In some cases, when you
want to return more than one item of information in one call, call-
by-reference is the best way to go. Call-by-reference also incurs less
stack space than call-by-value for structures which are large. Douloi
Pascal creates temporary stack space for all call-by-value parameters

144

User Manual for Motion Server and Servo Application Workbench

regardless of size. Some language systems default to call-by-refer-
ence. Developers who are familiar with this technique may choose to
use the VAR keyword to better simulate a parameter passing method
they are familiar with.

The general principle for choosing between the two is: If you expect
the value of the variable in the calling routine to be changed by the
function, use call-be-reference by indication with a �var� keyword.

Question: What happens when a constant expression or function is used to
provide a VAR, call-by-reference, parameter? How can an explicit number or
function be "pointed to"?

Answer: If an explicit parameter or function is found for a call-by-reference call
the compiler creates, behind the scenes, a temporary variables. The compiler
then arranges for that constant or function expresssion to be placed into the
temporary variable, and then uses a pointer to that temporary variable for the
VAR reference pointer. Note that this takes more time to execute than simply
passing a value to the routine. For small variables, ie integers, booleans,
longints, and single types, it is faster to simply pass the variable by value rather
than by reference.

145

6Douloi Pascal Language

Control Structures

Purpose

In order to organize a solution to a problem you need a way to
express a strategy. Control structures allow you to create strategies to
solve your application problem.

Control Structure Principles

Douloi Pascal supports several of the familiar Pascal style control
structures. Control structures are used to conditionally execute
certain instructions or to accomplish repeated execution of certain
instructions (iteration) with criteria to determine when the iteration
is completed.

Most control structures use the notion of a �conditional expression�.
Conditional expressions, when evaluated, will produce either a �true/
false� or �yes/no� type of answer. If this condition is true the program
behaves one way. If the condition is false it behaves another. The
following are examples of conditional expressions:

XAxis.ActualPosition > 2000
Input1 = On
NumberOfPartsMade >= NumberOfPartsRequired

Conditional expressions often involve the following comparison
operators:

< less than
> greater than
<= less than or equal to
>= greater than or equal to
<> not equal to
= equal to

Douloi Pascal supports the basic logical operators AND, OR, and
NOT as well as compound conditional expressions.

146

User Manual for Motion Server and Servo Application Workbench

RequiredPartsCompleted and NoNewBuildsRequested
not XAxis.MoveHasCompleted
UserAbort or SystemProblem

The following statement is also legal in a conditional expression:

(XAxis.ActualPosition > 2000) and
(YAxis.ActualPosition < 1000)

This would need to be broken up into separate statements. A discus-
sion of control structures now follows.

�If� Construct

�If� constructs are used to conditionally execute instructions. The
format of an �If� construct is:

IF <some conditional expression> then
<statement>;

An example of an �If� construct would be:

If XAxis.ActualPosition > 2000 then
XBeyondLimit:=true;

If you have just one statement that needs to be performed you can
simply place that statement after the �then�. However if you need to
execute several statements you need to enclose the entire group
inside a begin..end to create a single statement �block�. For example:

if XAxis.ActualPosition > 2000 then
begin
XAxisBeyondLimit:=true;
SignalAlarm;
AbortTask(Addr(XMovementTask));
end;

You may be familiar with languages which have an �Endif� to an �If�
instruction. Pascal instead uses the idea of performing �one� state-
ment after the IF, and that one statement can be a single compound
statement which contains inside many individual statements.

147

6Douloi Pascal Language

�If� instructions may be nested to allow construction of multiple
requirements:

if XAxis.ActualPosition > 2000 then
if YAxis.ActualPosition > 2000 then

begin
BothAxisBeyondLimits:=true;
SignalAlarm;
AbortTask(Addr(MovementTask));
end;

�If-Else� Construct

�If-Else� constructs are used to perform as exclusive alternatives
either one group of instructions or an alternate group of instructions.
The syntax of an �If-Else� construct is:

If <conditional expression> then
<statement>

else
<statement>;

If the condition is true the statement following the �then� is per-
formed. If the condition is not true the statement following the �else�
is performed. For example:

If XAxis.ActualPosition > 2000 then
XAxisBeyondLimit:=true

else
XAxisBeyondLimit:=false;

In a manner similar to the IF construct if more than one statement
needs to execute enclose that group of statements in a begin..end
compound statement.

The thing that�s hard to remember about if-else constructs is that a
semicolon does not follow the statement preceding the �else�. The
entire construct, from the compilers point of view, is one single
statement. Semicolons do not come until the end of the statement. If
an unnecessary semicolon is provided before the else the compiler
will let you know so you can remove it.

148

User Manual for Motion Server and Servo Application Workbench

If-Else statements can be nested to produce one-action-from-many
type selections, i.e.:

if Today=Monday then
Prompter.Writeln(‘What happened to the week-

end?’)
else if Today=Tuesday then

Prompter.Writeln(‘Where is the coffee?’)
else if Today=Wednesday then

Prompter.Writeln(‘Half way there....’)
else if Today=Thursday then

Prompter.Writeln(‘We are almost there...’)
else if Today=Friday then

Prompter.Writeln(‘TGIF!’)
else

Prompter.Writeln(‘Love that weekend’);

The Last else �catches� all the cases that did not qualify in the pro-
ceeding tests. Note again, that the semicolon does not occur until
after the last statement to conclude the entire group.

Douloi Pascal does not provide a �Case� statement. Case statements
can be simulated with the illustrated If-Else type constructs.

�For� Loop

The �For� loop is an iterative construct that is most useful when you
know how many times you want to do some group of statements.
The syntax of the �For� loop is:

For <local variable> := <expression> to <expres-
sion> do

<statement>;

The local variable after the �For� keyword will contain successive
values during the execution of the loops. The first value it will
contain is the value in the first numerical expression after the assign-
ment. After each execution of the following statement this variable
will be incremented by one. The iteration continues while the local
variables value is less than or equal to the second numeric expression.
For example:

For DestinationIndex:=1 to 5 do
XAxis.MoveTo(DestinationIndex*1000);

This will cause the XAxis to move to the coordinates
1000,2000,3000,4000 and 5000 in quick succession.

149

6Douloi Pascal Language

Douloi Pascal does not support DownTo. Iterative loops that have a
decrementing loop variable may be created with a �While� or �Re-
peat� construct.

In Douloi Pascal the criteria for performing the statement is the loop
variable value being less than or equal to the upper range numeric
value. If a loop is constructed where this is never the case the associ-
ated statement will never execute. This detail varies among pascal
implementations. Some implementation execute the body of a for
loop at least once, regardless of the loop criteria. Douloi Pascal does
not necessarily execute the loop body. For example:

for scanner:=1 to -1 do
Prompter.Writeln(‘This will never write’);

Setting up explicit numeric bounds such as this would probably
never occur. However the following frequently occurs:

for scanner:=1 to NumberOfPointsInArray do
begin
PlotPointAtVector(DataBuffer[scanner]);
if scanner > 1 then

Plotter.DrawLine(
DataBuffer[scanner-1].X,
DataBuffer[scanner-1].Y,
DataBuffer[scanner].X,
DataBuffer[scanner].Y);

end;

In this case data in an array is being plotted with discrete points as
well as lines between data values. Iterating over collections frequently
occurs and having to handle an empty collection as a special case is
annoying, i.e. if the body of the for loop always executed at least one
time you would be obliged to write the previous example as:

150

User Manual for Motion Server and Servo Application Workbench

if NumberOfPointsInArray > 0 then
begin
for scanner:=1 to NumberOfPointsInArray do

begin
PlotStarAtVector(DataBuffer[scanner]);
if scanner > 1 then

Plotter.DrawLine(
DataBuffer[scanner-1].X,
DataBuffer[scanner-1].Y,
DataBuffer[scanner].X,
DataBuffer[scanner].Y);

end;
end;

To simplify management of empty collections Douloi Pascal does
not require executing the for statement at least once.

The loop variable must be a local variable, i.e. defined inside the
procedure where this construct is being used. By being local the
variable is �safe� from being changed by some other activity that
would confuse the loop operations. The variable must also be an
integer or longint since it needs to �increment� from one loop to the
next.

Although it is possible to assign a loop variable inside the �for�
statement this is considered very bad style since it breaks the abstrac-
tion of the code body looping a specific number of times. If you feel
you need to assign a value to the loop variable what you really need
to do is use one of the following constructs which are specifically
designed for more conditional termination.

�While� Loop

A �While� loop is used to perform a group of instructions while a
certain condition remains true. The syntax of a �while� statement is:

while <expression> do
statement;

The expression is evaluated and if found to be true the statement is
executed. This continues until the statement is found to be false. For
example:

151

6Douloi Pascal Language

While not MovementFile.EndOfFile do
begin
MovementFile.Readln(XCoord,YCoord);
XYAxis.MoveTo(XCoord,YCoord);
end;

This would check to insure there is information remaining in the
MovementFile (a TFile SAW object for accessing the DOS file
system). If information is still in the file that information is retrieved
and the system moves to that location until the information is all
used. This will iterate various numbers of times depending on how
many coordinate pairs are in the file. Note also that if there is no
information in the file this loop never executes at all, i.e. it handles
the empty case.

While loops are best for iteration where the number of times desired
may be unknown and perhaps none at all.

There are some cases where you would deliberately want to create an
�infinite loop�. This is most simply done in Douloi Pascal by saying:

while true do
begin
<instructions>
end;

True is always true.

There are some synchronizing tasks where the objective is to do
nothing at all until a certain event occurs and then to proceed with
an operation. For example you might want to turn on a glue gun after
the x axis has passed the 10000 count mark:

XAxis.MoveTo(0);
XAxis.BeginMoveTo(20000);
while XAxis.ActualPosition < 10000 do

yield;
TurnOnGlueGun;

Note the �yield� instruction inside the otherwise �empty� while
statement. For some single-tasking systems, doing nothing is an
option but in a multitasking system doing nothing is quite selfish. If a
task is simply waiting it is important to yield to other system activi-
ties. Yield is a multitasking management procedure that directs a task

152

User Manual for Motion Server and Servo Application Workbench

to give up execution because the application developer knows that
nothing interesting will happen until the next sample. Execution will
return to this procedure in the next millisecond so you really are not
yielding control very much. However it is extremely important that
you are willing to let go. Douloi Pascal supports high frequency
multitasking however it is cooperative in nature. A task must not
attempt to control the CPU for longer than it�s share of a 1 millisec-
ond sample. Forgetting the yield instruction would cause the system
to lock. Principles of multitasking will be discussed later at greater
length however the point to be made here is that in Douloi Pascal
there are usually no empty loops.

�Repeat� Loop

The �repeat� loop has a similar purpose to the while loop, of han-
dling iteration for an indeterminate number of times, however it is
organized so as to ask the question at the end rather than the begin-
ning, and it asks the question in the opposite sense. The syntax of a
�repeat� loop is:

repeat
<statements>

until <expression>

This is the only construct in Douloi Pascal which is guaranteed to
execute its body at least one time. Execution �passes by� the repeat
keyword and immediately performs the instructions in the repeat
body. After doing these instructions a condition is evaluated. If the
condition is true execution falls through the until keyword and
continues past the block. If the condition is false execution returns to
the location indicated by �Repeat� and the loop is repeated. For
example:

repeat
XAxis.MoveBy(100);

until XAxis.ActualPosition >= 20000

This causes the XAxis to �hop� a small step repeatedly until the
absolute position is greater than 20000.

Repeat constructs are unusual in that they are the only construct
which permits a group of statements, between the repeat and until
keywords, without an enclosing begin..end construct (although

153

6Douloi Pascal Language

you�re welcome to put the begin..end in there if you like). The
structure of the construct explicitly delimits the range of instructions
so the compiler is able to distinguish the range without any addi-
tional help.

For the same reasons as explained for while constructs it is never
appropriate to have an empty repeat construct, i.e. the following
would be the minimum repeat body:

repeat
yield;

until XAxis.ActualPosition < 20000; {or some other
condition}

�Try..Recover�

�Try..Recover� provides structured exception handling. Exception
handling has been recently approved by the ANSI committee for
C++ and is regarded as a powerful new capability that will simplify
program design in the future. Douloi Pascal provides an exception
handling mechanism through Try..Recover. Although more in-
volved than other control structures Try..Recover can simplify
application design. It is important to understand Try..Recover be-
cause many object methods use this structure and may expect appli-
cations calling these methods to respond appropriately.

An �exception� or �escape� is a system response to some problem that
occurs. For example getting a word from the user when a number
was explicitly requested generates an exception. Discovering that a
file contains no more information when more information was
expected generates an exception. Attempting to control an axis which
is currently being controlled by something else generates an excep-
tion. In a sense exceptions are problems which actively seek out their
solutions. Using Try..Recover involves making arrangements so that
exceptions will find their solutions.

The syntax of �Try..Recover� is:

Try
<try statement>

Recover
<recover statement>

154

User Manual for Motion Server and Servo Application Workbench

In a manner similar to the �if..else� construct you don�t want to have
a semicolon before the Recover keyword.

During execution the Try keyword is encountered and the program
constructs a kind of �safety net� with one end �pegged� to the �Try�
keyword and the other end of the net �pegged� to the recover key-
word. The statement between the try and recover is then spanned by
this safety net. Execution of the try statement begins and is most
likely a compound statement with begin...end bracketing a group of
statements. If at any time during this group of statements an excep-
tion is generated the execution of those statements stops at that point
and execution �drops out� onto the safety net. Like the circus per-
forming trapeze artist who misses the bar, lands on the safety net and
then rolls to the end of the net to get off, program execution is
captured by the net and �rolls� to the recover block end of the net
and continues execution with the instructions in the recover block. If
no problem was encountered during the try statements there is no
need for recovery and the statements in the recover block are ig-
nored.

The following example would illustrate how a try..recover block
might be used:

Try
SpeedEditor.Read(aSpeed)

Recover
Prompter.Writeln(‘Speed value not a number’);

In this example the Read method is expecting to get from the editor
information compatible with the type of the Read parameter. If the
user types in a name instead of a number an exception is generated by
the Read method and execution moves to the recover block where an
error is displayed.

If there are several statements and different types of exceptions could
occur how are the exceptions distinguished? Exception types are
identified by unique numbers. When responding to an exception in a
recover block it is good practice to look at the number of the excep-
tion to gain some understanding as to what problem occurred and
what a suitable response might be. The exception number or �escape
code� is found with the global function EscapeCode. Typical recover
blocks have a set of tests that check if it is this problem or that prob-
lem. If the problem is beyond the capabilities of the recover block the
block ends by issuing an exception itself in the hopes that a proce-

155

6Douloi Pascal Language

dure or function that called it may know how to handle the problem.
Exceptions �climb up� the procedure invocation ladder looking for a
recover block that is willing to handle their problem. This recover
block exception is created with the statements Escape(EscapeCode).
Escape is a procedure which causes an exception to be generated. The
value of the escape is EscapeCode, the currently unhandled error. If
no one knows how to handle the problem the exception eventually
makes its way back to SAW which has a default recover block that
displays the escape code on the screen.

An example of a more advanced try recover block might be the
following:

try
begin
DestinationEditor.Read(aDestination);
XAxis.BeginMoveTo(aDestination);
end

recover
begin
if EscapeCode=ReadEscapeCode then

Prompter.Writeln(‘Please provide a longint’)
else if EscapeCode=MotionOverrunEscapeCode then

Prompter.Writeln(‘Impossible move requested’)
else

Escape(EscapeCode);
end;

In this example there are two statements in the try block. The first
statement, the editor read, has the capacity to escape if the user
provides a type which is not suitable. The second statement, the x
axis movement, has the capacity to escape if while in motion a desti-
nation is given to the axis which it cannot perform. The recover
block checks for each of these conditions using the symbolic names
for escape codes. These names can be found in the on-line help by
searching for the word �escape�. If the escape was neither of these
two cases the recover block escapes with the value of EscapeCode so
that the routine which called it can possibly respond. Note that the
chain of recourse for an escape is �up the call ladder�. An escape will
attempt to get an answer from the immediate routine, then the caller,
then the caller of that etc. until either it finds an answer or finds the
top level default recover block which displays the escape code on the
screen. Note that this �ascent� up the call chain is enabled by using
Escape(EscapeCode) in the recover block. If you do not issue an

156

User Manual for Motion Server and Servo Application Workbench

escape for unhandled escape codes you are basically ignoring the
problem of an unhandled escape and �sweeping the escape under the
carpet�. This is not a good practice because an important piece of
run-time information relating to something failing is not being
acknowledged. Always end recover blocks with a �none-of-the-
above� response of Escape(EscapeCode).

Up till now we haven�t strongly motivated the reason to have
Try..Recover. It seems that there are several simpler alternatives for
accomplishing what we are doing with Try..Recover such as using an
unconditional jump to an error handler or passing status parameters.
The next example makes an important distinction between
try..recover and these other techniques. Imagine the following proce-
dures:

procedure PerformMotion(Destination:longint);
begin
XAxis.BeginMoveTo(Destination);
end;

procedure PerformManyMoves
var scanner:longint;
begin
for scanner:=1 to 10 do

PerformMotion(scanner*1000);
end;

try
PerformManyMoves

recover
begin
if EscapeCode=MotionOverrunEscapeCode then

Prompter.Writeln(‘Motion Overrun Occurred’)
else

Escape(EscapeCode);
end;

The first procedure abbreviates an X axis motion. The second proce-
dure performs many of these motions. The try statement invokes
PerformManyMotions however it is possible for the motor to be
actively moving to a destination from some previous activity. If the
BeginMoveTo which eventually gets called in PerformMotion
cannot successfully splice a new destination onto the current motion
a MotionOverrunEscapeCode will be generated.
PerformManyMoves contains no error management code at all.
Never the less, the MotionOverrunEscapeCode will travel �through�

157

6Douloi Pascal Language

this intermediate procedure and get caught in the recover block of
the routine which called PerformManyMoves. This emphasizes the
�safety net� model of try..recover. Escapes can traverse through
different call levels to find a solution to a problem.

The ability of Try..Recovers to be nested indirectly through proce-
dure calls is a very powerful capability. This allows subordinate
routines to attempt recovery operations themselves, handling the
day-to-day problems as underling managers. However if major
problems come along that they cannot handle they have a way to
express that they cannot cope with the problem and request help
from their manager.

Exception handling allows a high level procedure to express respon-
sibility for handling a particular class of problem and permits inter-
mediate-manager procedures from having to be concerned at all. If a
low level exception is generated execution goes right past the inter-
mediate managers directly to the one that expressed responsibility
where it gets handled. This greatly simplifies error management.

Question: Try Recover just looks like a complicated way to handle a �goto�.
Why don�t you just �goto� the recover block if you have a problem?

Answer: For the simplest case this might work however you would encounter at
least the following two problems: (1) Imagine that the procedures called by the
try statement are used by different routines. How would the procedure know
where to go with a �Goto�? You would have to have distinct procedures for
every procedure use thwarting the generality procedures bring to programming or
pass pointers in some manner, (2) If an exception occurs �several levels down�
in procedure calls and you simply performed an unconditional jump, the
intermediate stack frames that were created would be left on the stack and
program execution would be corrupt by a confused stack. Try..Recover manages
the stack frames automatically.

Question: What�s the advantage of exception handling over simply an error
result? Why not just provide procedures with an additional var parameter that
indicates if the operation was successful?

Answer: That method of solutions is a good one to consider for systems which do
not have exception handling mechanisms. The disadvantage of the error result
approach is that you have to check or at least record the error result for every call
made to the routine or you may lose an error indication. This is tedious and
programmers are tempted to disregard the information.

158

User Manual for Motion Server and Servo Application Workbench

This requires that error results get �shipped� back from called procedures
explicitly, i.e. the only way to get an error result back from a low level procedure
is to pass it back through intermediate procedures as a variable or to record it
globally and have all of the procedures in between check the error and leave
prematurely if an error exists. This is very tedious to thoroughly implement.
Most likely an error will occur and the absence of a check will cause a �man-
ager� procedure to incorrectly continue as if everything is fine resulting in future
problems.

One language design question with respect to exception handling
which comes up is �Should exceptions be resumable?� i.e. should
there be some way, after responding to an escape code in a recover
block to resume execution at the point where the escape occurred?
Douloi Pascal does not include resumable exceptions. Motion sys-
tems in particular tend to have a physical state as well as an informa-
tional or program state. If something goes wrong it is usually neces-
sary not to go back to where things failed but rather to go back before
that point to some prior physical state to setup another attempt.
Rather than reproduce this setup in the recover block it is usually
better to take a fresh �full cycle� attempt through an enclosing repeat
loop or higher level repeat loop. For example:

repeat
try

begin
XAxis.BeginMoveTo(aDestination);
TroubleEncountered:=false;
end

recover
begin
TroubleEncountered:=true;
if EscapeCode=MotionOverrunEscapeCode then

XAxis.WaitForMoveToFinish {motion stop}
else

Escape(EscapeCode);
end;

until not TroubleEncountered;

A discussion of multitasking capabilities will follow later in the
document however one point needs to be made now. Once a task is
started, even by another task, it is accountable to no one and operates
on its own. Escapes generated within a spawned task do not travel
back to recover blocks in the task which spawned the escaping task.
They will instead travel up to the default handler. Tasks need to take

159

6Douloi Pascal Language

responsibility for their own errors.

Error handling can be shared by writing a single handler routine
which is used by many different tasks, i.e.:

function
EscapeProperlyHandled(anEscape:integer):boolean;

begin
EscapeProperlyHandled:=true;
if anEscape=MotionOverrunEscapeCode then

Prompter.Writeln(‘Motion Overrun’)
else if

anEscape=EditorExpectingLongintEscapeCode then
Prompter.Writeln(‘Expecting longint’)

else
EscapeProperlyHandled:=false;

end;

try
<do task operations>

recover
if not EscapeProperlyHandled(EscapeCode) then

Escape(EscapeCode);

The routine EscapeProperlyHandled can be used by many different
tasks in top level recover blocks to avoid having to copy the recover
behavior into each one.

160

User Manual for Motion Server and Servo Application Workbench

161

6Douloi Pascal Language

User Defined Types

Purpose

Getting organized can be aided by having containers that are the
right size and shape for items you need to have stored. Douloi Pascal
supports user defined types for records and objects that permit
creating special storage containers for information. This section
describes the creation of user defined types.

User Defined Record Types

If you find a need for a special data type that has not been provided as
a predefined type you can create your own. When creating user
defined type definitions you are moving out more on your own than
with general types or predefined types. The following code fragments
would be placed into a �Type definition� user symbol from the SAW
plate editor. After the leading type definition you would then include
variable and array declarations explicitly, i.e. the interactive variable
dialog box is not aware of special types you create and accordingly
cannot provide you with the type name when creating a variable.

Type definitions can be made for records and objects. Records will
be discussed first since they are simpler. The syntax of a record type
definition structure is:

Type <type name>=record
<FieldName1>:<FieldType1>;
<FieldName2>:<Fieldtype2>;
<FieldName3>:<FieldType3>;
...
end;

The type name is the name you will use in future variable declara-
tions to indicate a variable with this structure. The field names are
the �compartment� labels that you will use to indicate that particular
part of the variable. The fields have types described by their respec-
tive type names. For example imagine that a drilling machine was
designed to drill holes in various locations to various depths.

162

User Manual for Motion Server and Servo Application Workbench

A helpful data structure for such a machine might be:

Type THole=record
Location:T2Vector;
Depth:longint;
end;

Holes have a location and a depth. This is reflected in the structure
of this variable. The name THole is used to conform to the conven-
tion that type definitions begin with a capital T to help direct the
reader in understanding the purpose of the symbol.

A function that might use such a type could be:

procedure DrillHole(aHole:THole);
begin
XYAxis.MoveToVector(aHole.Location);
ZAxis.MoveTo(aHole.Depth);
ZAxis.MoveTo(0);
end;

You can then create an array of holes through an array declaration
such as:

const NumberOfHoles=20;
var HoleArray:array[1..NumberOfHoles] of THole;

You could then have the drill perform all of the holes (assuming they
were all initialized to appropriate values) with the routine:

procedure DrillAllHoles;
var HoleScanner:integer;
begin
for HoleScanner:=1 to NumberOfHoles do

DrillHole(HoleArray[scanner]);
end;

The array is composed of THoles. Any particular item in the array is
a THole and accordingly can be passed as a parameter to a function
expecting to have a THole.

User defined types help elevate the abstraction of a program by
allowing the program to manipulate items that are more like items in
the actual problem, i.e. a drill is concerned with holes. It is very

163

6Douloi Pascal Language

convenient to be able to directly discuss holes rather than being
constantly concerned with lower level details of holes such as x and y
locations and drill depths.

User Defined Object Types

Objects are similar to records and have similar type declarations. The
difference between an object and a record is that as well as fields
representing information, objects can have fields which represent
behaviors, i.e. functions and procedures that are specifically under-
stood by that object. These procedures and functions can access the
information in the object as well as other procedures and functions.
Procedures and functions may be written directly in the body of the
type declaration. The type definition for an object is:

Type <ObjectName>=object
<DataItem1>:<DataItem1Type>;
<DataItem2>:<DataItem2Type>;

<Procedure1Name>;
<procedure body>

<Procedure2Name>;
<procedure body>

<Function1Name:<Function1Type>;
<Function Body>

...
end;

Object programming kindles the imagination because it invites
thinking of objects in much more active terms than the physical
object might ever portray. For example we can �turn around� the
previous hole drilling example by making �active� hole objects
instead of having inactive hole records. Consider the following
object typed definition for a hole:

Type THole=object
Location:T2Vector;
Depth:longint;
procedure Init(XPos:longint; YPos:longint;

HoleDepth:longint);
 begin
 Location.Init(XPos,YPos);
 Depth:=HoleDepth;
 end;

164

User Manual for Motion Server and Servo Application Workbench

procedure Drill;
begin
XYAxis.MoveToVector(Location);
ZAxis.MoveTo(Depth);
ZAxis.MoveTo(0);
end;

end;

As well as specifying the previous data items for a hole there is now a
drill procedure allowing holes to �drill themselves�. (This kind of
reasoning comes up frequently in object programming where objects
take on active responsibilities).

We could test out this object with the following code:

procedure test;
var aHole:THole;
begin
aHole.init(1000,2000,500);
aHole.Drill;
end;

Drilling through an array of holes now becomes:

const NumberOfHoles=20;
var HoleArray:array[1..NumberOfHoles] of THole;
procedure DrillAllHoles;

var scanner:integer;
begin
{some process establishes hole data}
for scanner:=1 to NumberOfHoles do

HoleArray[scanner].Drill;
end;

The convenience of objects includes the ability to specify a �standard
protocol� for objects being used. For example all of the different
TNVectors respond to the Init procedure to conveniently fill in
values. The parameter lists for each Init procedure are different
because the dimensions of the vectors are different. A TNAxis axis
group also has an Init constructor. If you need to know how to
initialize an object there is a good chance that the way is to use Init.
You may need to look up the parameter list in the on-line help
documentation but you�ll know where to look.

165

6Douloi Pascal Language

Using the Math Coprocessor

Purpose

Douloi Pascal supports infix notation for 32 bit single precision and 64 bit
double precision numbers that can be calculated on systems without a math
coprocessor. However, when an application requires higher trigonometric
functions or fast floating point performance the best approach for a real
time system is to use a math coprocessor. PC's based on the 486DX have a
math coprocessor built in. 386 machines will require the external plug-in
math coprocessor to benefit from the following capabilities.

Calculator Model

The math coprocessor is provided to application programs as an RPN
(Reverse Polish Notation) calculator that directly maps to the structure of
the device. If you've used an HP calculator this approach to calculating is
very familiar. The calculator contains a numeric "stack" onto which you
"push" parameters. After a sufficient number of parameters have been
provided an operation can be performed which often replaces the param-
eters with a result. This result most often remains on the stack to become a
parameter for the next operation. Most RPN calculations are performed
"from the inside out" when compared to a conventional algebraic equation.

Douloi Pascal provides routines that push and pop Douloi Pascal numeric
types. Once these types are on the "stack" operations can then be performed
benefitting from the full 80 bit real format used by the math coprocessor.
The math coprocessor is a shared resource of the computer. The most
considerate technique for using the math processor requires saving its
current state to a buffer, initializaing it (to have a fresh start), performing
your calculations, saving the answer, and restoring the coprocessor to its
previous condition, all in one sample. This allows calculations being
performed by other programs to complete correctly. The "template" for this
process is shown as follows:

procedure CoprocessorExampleUse;
var Buffer:TMathCoprocessorBuffer;
begin
FSave(Buffer);
FInit;
{...perform calculations...}
FRestore(Buffer);
end;

166

User Manual for Motion Server and Servo Application Workbench

Calculation Procedures and Functions

The following list briefly describes procedures and functions used with the
math coprocessor. Additional information can be found in the on-line help.
In general the procedures map directly to math coprocessor instructions.
The notes use a "Forth" style comment notation indicating the "before"
condition of the stack on the left side of the dash and the "after" condition
of the stack after the operation.

The following procedure should be used when first starting the application
to put the coprocessor into a known state.

procedure FInit; {---}

Typically this would be in the setup procedure for the main windows
although it may also be in the procedure that uses the coprocessor as
shown in the examples following.

The following routines are used to put types found in Douloi Pascal onto
the top of the math coprocessor stack:

function PushLongint(aLong:longint); (--- n)
function PushSingle(aSingle:single); (--- n)
function PushDouble(aDouble:double); (--- n)

The following procedures perform operations on the parameters currently
pushed on the stack and leave results on the top of the stack.

procedure FAdd; (a b --- a+b)
procedure FSub; (a b --- a-b)
procedure FMul; (a b --- a*b)
procedure FDiv; (a b --- a/b)
procedure FSqrt; (a --- sqrt(a))

The following trigonometry routines are available. The parameters are in
units of radians.

procedure FSin; (a --- sin(a))
procedure FSinCos; {a --- sin(a) cos(a))

The following numbers are often used and these routines provide short
cuts for loading them into the calculator.

procedure FLdPi; {Load Pi} (--- pi)
procedure FLdZ; {Load Zer} {--- 0}
procedure FLd1; {Load One} {--- 1}

167

6Douloi Pascal Language

The following routines are available for moving results from the math
coprocessor back into normal Douloi Pascal variables.

function PopLongint:longint; { n --- }
function PopSingle:single; { n --- }
function PopDouble:double; { n --- }

Math Coprocessor Examples

Adding Two Numbers

The following routine, implemented as a button click procedure, would be
an example (overkill though it may be) of adding together two numbers.

procedure Click;
var Buffer:TMathCoprocessorBuffer;
var Answer:longint;
begin
FSave(Buffer);
FInit;
PushLongint(2);
PushLongint(3);
FAdd;
Answer:=PopLongint;
FRestore(Buffer);
Prompter.Writeln(Answer);
{you should see the value 5}
end;

168

User Manual for Motion Server and Servo Application Workbench

Calculating The Sin of a Number

The following routine calculates the sin of a number provided in degress.
The number is read from an editor named NumberEditor and the result is
placed into a text object named AnswerDisplay as well as returned in the
function. Note that the FSave occurs after the readln (which involves task
yielding) and the restore is performed before the writeln (which also
involves yielding). The setup, calculation, and retreival of the answer are
all performed in the same sample.

Function GetSin:Single;

var UserNumberInDegrees:Single;
var Answer:Single;
var Buffer:TMathCoprocessorBuffer;

begin
NumberEditor.Readln(UserNumberInDegrees);
FSave(Buffer);
FInit;
PushSingle(UserNumberInDegrees);
FSin;
Answer:=PopSingleReal;
FRestore(Buffer);
AnswerDisplay.Writeln(Answer);
GetSin:=Answer;
end;

169

6Douloi Pascal Language

Multitasking System

Purpose

Getting organized can be simplified by having more than just one person
doing the job. By having a group of participants, each covering a particular
responsibility, the total task is accomplished with each sub-task more easily
expressed than a description of the entire task as a single unit. Motion
Server provides support for high frequency multitasking to provide this
kind of advantage to a motion control application program. This section
describes the principles of multitasking for this system, the particular
procedures used to manage tasks, and usage techniques.

Multitasking Model

Multitasking can be designed into a system such as Motion Server in
different ways depending on the system�s design objectives. The driving
criteria for Motion Server is suitability for motion control. Although
general purpose multitasking has a potential role to play in any program,
the main benefit of multitasking in a motion control system is creating
custom axis coordination. We would like to create programs which can
prescribe specialized criteria for a motor position that has as much resolu-
tion and performance as the built-in trapezoidal profiler, i.e. we want to be
able to create at the application level, through a multitasking mechanism,
custom profiles to perform activities such as electronic gearing, cam trajec-
tories, etc. that can operate while other application procedures are also
operating.

This implies that the multitasking system needs to be able to run a com-
manded position setpoint program at the rate of the built-in profiler, 1
KHz. To properly understand application responsibilities involved in using
the multitasking system some details of the system will now be discussed.

The multitasking system is part of the 1 KHz sample rate interrupt. Every
millisecond the 486 is interrupted from the job of executing Windows and
performs the interrupt handler. The interrupt handler performs the follow-
ing functions:

Position Maintenance for up to 16 axis

Motor Control Laws for up to 16 axis

Profile Management for up to 16 profiles

170

User Manual for Motion Server and Servo Application Workbench

Conventional Tasks for up to 12 tasks

These interrupt handler components are now discussed.

Position Maintenance

The motion system is able to describe motion over a range of +/- 4 billion.
The actual hardware only monitors position changes over a range of 64K
counts. The Position maintenance section accumulates these smaller
position deltas to maintain the absolute position of each of the axis.

Motor Control Laws

A PID control law is performed for each axis which has the servo active.
The corresponding motor command for that axis is then set to reflect the
results of the calculation.

Profile Management

As many as six axis of motion can be independently active (i.e. six separate
single axis moves). The calculations for these profiles are done in this
region of the interrupt handler so as to calculate the commanded setpoint
that will be used in the next sample period.

Conventional Tasks

Six conventional tasks can be arranged to run each sample although it is
much more common for only a few tasks to operate every sample while
other tasks are scheduled to execute at much lower frequencies. These tasks
are what you create when you fill in �click� procedures for buttons or event
procedures for plates.

Last Task

You may optionally have a �last� task. This is most often a safety/limit
switch task which gets a �last shot� at execution after the profiler and
conventional tasks have executed. This task has the opportunity to super-
seded the commanded positions that were established by the motion
profiler or the conventional tasks making it the best place to manage limit
switch information.

171

6Douloi Pascal Language

Cooperative Multitasking

Note that the tasks have the opportunity to run every millisecond and that
they are part of the interrupt handler and are not in the �foreground�.
Windows is in the foreground. The tasks must execute �cooperatively� in
the interrupt handler region in the same way that Windows applications
need to �cooperate� in the foreground region. It is bad for a single task to
�take over� the entire time slice, or worse, to attempt to take over the entire
machine. By doing so the task overruns its fair share of the interrupt time,
possibly the sample period, and possibly produces a reentrancy to the
handler if it lasts too long. Although the handler can survive a limited
number of reentrancies this clearly is not a steady state permissible situation
and eventually the system will lock. As was mentioned in the language
section on looping, it is important for tasks to �yield� to the system and not
perform empty loops waiting for a system event to occur. The routines
TaskOverranSample, CheckTask, and TimeRemaining can be used to
determine if a task is taking too much time.

As unfortunate as a locked system may appear to be during development
because of a programming mistake, in practice it has not been that inconve-
nient. Douloi Automation has never lost saved information or system
integrity when performing a soft or hard reset from the locked condition
created by this effect. However any work on an application that was per-
formed but not saved will be lost. It is good practice to save your work
before attempting to run an application.

If a locked system seems to be a severe consequence for a programming
error bear in mind that although Motion Server and SAW simplifies access
to a real-time multitasking motion control system, you never the less are
still working with one. For the privilege of having real performance you
must take the risk of possibly having real problems. Douloi Automation is
available to work with you to understand application development prob-
lems. Don�t hesitate to call. Save your work frequently.

Windows Mail

Many responsibilities performed by a program can be accomplished with
the resources available right within a task. Motion profiling, array manage-
ment and data collection, computations, etc. are performed entirely by the
real time tasks themselves. However there are times when tasks need to
interact with Windows and/or with the operating system, for example to
display information on a graph or write information to a file.

The real time tasks do not have the authority to directly access these
resources themselves. You may have heard the statement �DOS is not re-

172

User Manual for Motion Server and Servo Application Workbench

entrant�. This is the case. Tasks cannot access the operating system directly
because they are often performing their work while in the midst of inter-
rupting DOS already which would break this rule. In order to relate to
Windows and DOS, tasks �send mail� to SAW requesting services on behalf
of the tasks. In a manner analogous to the BIOS routines, a certain template
of information is filled out by the task and �mailed�. The task waits until it
receives a response to the �letter� it sent. SAW, in its good time, subject to
the multitasking state occurring in Windows, gets around to discovering
mail has been sent. SAW then reads the letter to understand what service is
needed and what data relates to that service, performs the service, and then
sends mail back indicating that the service has been accomplished. The task
is then free to continue executing.

The fact that a �mail� operation is being used to accomplish a certain task is
completely hidden from you. You simply use a method, such as Writeln, to
display some information. Internally that method results in mail.

It is important to note that task execution blocks while waiting for the
service to be performed. What this means is that any operation that involves
interacting with Windows or DOS is not real time. There is no way of
knowing how long it will take SAW to get a chance to execute with the
Windows cooperative multitasking mechanism. A �paint� operation on a
graph can hold up the delivery of mail for several seconds.

Although this may appear to restrict real time usefulness this limitation can
be avoided with the simple principle: If it�s time critical, don�t send mail.

How do you know if you�re sending mail if the mail mechanism is con-
cealed from the developer? The general principle is: if it produces any
visible effects, or it relates in any way to the operating system, then it�s
being performed through mail.

It should always be possible to �factor� a task into two tasks, one �real-time�
task and another �support� task so as to accomplish unhindered time
critical activity. Consider as an example the following procedure which
moves an axis while displaying the position of the axis during motion:

procedure MoveAxisAndShowPosition;
begin
while true do

begin
XAxis.BeginMoveTo(20000);
repeat

PositionDisplay.Writeln(XAxis.ActualPosition);
until XAxis.MoveIsFinished;
XAxis.BeginMoveTo(0);
repeat

173

6Douloi Pascal Language

PositionDisplay.Writeln(XAxis.ActualPosition);
until XAxis.MoveIsFinished;
end;

end;

This type of approach would be necessary if multitasking was not available.
While waiting for the move to finish you maintain control panel operation
while polling to determine if another move should be started. The problem
with this approach is that there is no way to know how long
PositionDisplay.Writeln will take. If another Windows application
takes control and doesn�t let go it may be several seconds. This means that
there may be an unnecessary delay between the completion of one move
and the start of the next. An additional problem with this approach is that
writeln is being performed far too many times. A screen refresh rate of 5
Hz is just fine, but this will attempt to constantly update the display. A
delay instruction could be included to reduce the flicker of the display, but
this introduces a constantly present, unneeded delay between moves. To
avoid that delay you could write a delay routine that pre-maturely exited if
the polling condition was found to be true. This solution approach just
seem to be getting worse.

A �two task� approach which simplifies things all around is:

procedure ShowPosition;
begin
PositionDisplay.Writeln(XAxis.ActualPosition);
end;

procedure MoveAxis;
begin
ScheduleTask(Addr(ShowPosition),200);
while true do

begin
XAxis.MoveTo(20000);
XAxis.MoveTo(0);
end;

end;

These cleanly separates the original task into two separate tasks. One task is
responsible for displaying information, and the other for performing the
motion. Each is quite simple. The motion task does not send any mail and
so will never be blocked. There will be no delays in the movement regard-
less of what Windows does. The other task may get blocked while its
performing PositionDisplay.Writeln but we don�t care. All that means is
that the position information displayed is a little out of date. It will correct
itself as soon as the offending Windows application lets go and the screen
refreshes. Also note that the 5 Hz PositionDisplay update rate is provided
quite easily through ScheduleTask (200 is the specified number of millisec-
onds in between each invocation of ShowPosition).

174

User Manual for Motion Server and Servo Application Workbench

This illustrates one of the benefits of multitasking. By separating out the
movement responsibility from the display responsibility the tasks become
decoupled and each is simpler. The familiar saying �the sum of the whole is
greater than the sum of the parts� might be restated as �the complexity of
the whole is greater than the complexity of the sum of the parts�. Decom-
position is almost always a good idea.

Multitasker Commands

The following commands manage the operation of the multitasking
system. Details of command syntax and usage may be found in the SAW
on-line help.

BeginTask.......... Causes a specified task to begin execution
SuspendTask........ Causes a specified task to hold off execution
ResumeTask......... Causes a specified suspended task to continue
executing
ScheduleTask....... Causes task to periodically begin execution
AbortTask.......... Causes a specified task to terminate
Yield.............. Causes a task to wait until next sample.
Delay.............. Causes task to wait <n> of milliseconds
TaskOverranSample.. Returns true if the task took too much time
CheckTask.......... Escapes if a task took too much time.
TimeRemaining...... Returns microseconds left in sample period.
TaskPresent........ Returns true if the task is present
TaskAddr........... Returns a task address given the task name

Techniques

�Saturating� limit switch routine.

The Last Task is provided primarily to allow the construction of �saturat-
ing� limit switch routines. For example, one possible limit switch behavior
is to have an axis stop its movement when a limit switch is encountered
while allowing all of the other axis to continue their operation as if there
was no problem. This is often seen on plotters when a drawing is off the
page. When the drawing comes back onto the page the stopped axis re-
sumes operation.

To create this behavior a plate procedure can be written to detect when a
limit switch asserts and to record the boundary position for the axis at that
point. On subsequent cycles the commanded position for that axis may
attempt to advance the axis. The commanded position might be implicitly
set through a profiled moved, or explicitly set through the use of
TNAxis.SetCommandedPosition in an electronic gearing task, for example.
In any case, the last task gets to see the commanded position after every
other agent has had an opportunity to change it. While the switch is as-

175

6Douloi Pascal Language

serted and the commanded position for that axis is greater than the bound-
ary position the �saturating� limit switch routine changes the commanded
position to the boundary position. When the commanded position comes
back into a normal operating range the limit switch routine simply lets the
value pass through unaffected. This allows the saturating behavior to work
regardless of how the commanded position is accomplished.

Task synchronization

Suitable decomposition of a problem into separate tasks can simplify a
motion application. There are times, however, when it is important for one
task to wait until another task has finished. The management of having one
task wait for another can be referred to as task synchronization.

Synchronization Approach 1, Shared Variables

A simple approach to synchronization is shared variable flags. In this
technique a single boolean variable is used by two different tasks. The
variable is given an initial state by the first task, the second task is started,
and the first task waits until the second task changes the value indicating
that the second task has finished.

As an example consider the following two tasks. The first task, named
Operation1, begins Operation2 which performs some other activities and
then waits for Operation2 to finish:

procedure Operation1;
begin
Operation2IsFinished:=false;
BeginTask(TaskAddr(Operation2));
{do some activities}
repeat

yield;
until Operation2IsFinished;
PrompterWriteln(‘Both Operations Done’);
end;

procedure Operation2;
begin
{do operation 2 activities}
Operation2HasFinished:=true;
end;

The variable Operation2IsFinished is a boolean plate variable which can be
accessed by both tasks. Operation1 sets the variable to be �false� (i.e.
Operation2 has not finished, in fact it has not even started yet...) and then
begins Operation2 as a separate task. Operation1 continues executing
instructions that follow. When all of the remaining instructions are com-

176

User Manual for Motion Server and Servo Application Workbench

pleted Operation1 waits for Operation2 to finished by looping (remember
the yield inside an otherwise empty loop) until the variable
Operation2IsFinished is set to true. If this was a single tasking system this
would wait forever since nothing in the loop changes the value of
Operation2HasFinished. In a multitasking system there are other agents
active, however. Operation2, upon completion, sets the variable to true
signalling to anyone who is concerned (including Operation1) that Opera-
tion2 has finished.

Note that Operation1 takes responsibility for initially setting the variable
Operation2HasFinished to false. It may seem like a good idea to have
Operation2 set the variable to false when it first starts and set it to true at
the end. However there are situations where this might not work correctly.
Even though Operation1 performs a BeginTask to get Operation2 started,
no other task actually does anything until Operation1 yields. The behavior
of BeginTask is really to setup the task to run when given an opportunity to
do so. If there are no yields between the time that BeginTask is given and
the check is made in the repeat loop Operation2 would never have had a
chance to initialize the variable to the correct value, false, and this would
fail to work correctly. This is an example of a �race� condition when
performing task synchronization. By having Operation1 set the boolean it
is guaranteed to hold off Operation1 and the particular timing of each task
no longer matters. In general, the task that will regard the flag information
should perform the initialization so as to not outpace the initialization
otherwise done in some other task.

Synchronization Approach 2, Task Status

Another way to have Operation1 wait for Operation2 to finish is to use the
TaskPresent function. This approach would look like:

procedure Operation1;
begin
BeginTask(TaskAddr(Operation2));
{do some activities}
repeat

yield;
until Not TaskPresent(TaskAddr(Operation2));
PrompterWriteln(‘Both Operations Done’);
end;

procedure Operation2;
begin
{do operation 2 activities}
end;

177

6Douloi Pascal Language

Operation2 becomes present as soon as it is setup for execution.
TaskPresent will report that Operation2 is present after being setup with
BeginTask even if it has not had an opportunity to run yet. This eliminates
the need for the intermediate variable by directly accessing the task state.

Synchronization Approach 3, Don�t multitask

Another approach is to recognize that you may be over-using multitasking
and to simply not multitask. If Operation1 really doesn�t have anything
important to do until Operation2 is finished it is much simpler to just call
Operation2. Subroutine calls suspend the calling operation until the called
function has had a chance to finish. The example then becomes:

procedure Operation1;
begin
Operation2;
PrompterWriteln(‘Both Operations Done’);
end;

procedure Operation2;
begin
{do operation 2 activities}
end;

Multitasking is useful but makes matters complicated when used unneces-
sarily. Don�t forget that conventional procedure calls are available and by
far represent the simplest way of keeping a set of statements in a particular
order if you are willing to suspend the calling task.

178

User Manual for Motion Server and Servo Application Workbench

179

6Douloi Pascal Language

Program Formatting

Purpose

The ease with which a program can be read and understood is dra-
matically influenced by the program's formatting. There are many
formatting guidelines. This note presents one particular style which
is used in Douloi Pascal examples and software catalog components.

Principles

Douloi Pascal allows spaces and lines between different statements,
and even between words within a statement. The main principle in
program formatting is to create a spatial representation of the pro-
gram structure and particularly of statement groups or "blocks".

The main formatting principle being shown here is to indent the text
whenever a new group of statements represents a new level of ab-
straction. The reader of the program can "modulate" the level of
detail by changing how far to the right he starts reading text.

For example the most abstract part of a procedure is its name. It may
be (particularly if the name is well chosen) that all you need to know
about a procedure is the name. Accordingly the procedure declara-
tion is furthest to the left and everything else about the procedure
will be indented to the right. When reading, the thought that might
go through the reader's mind might be:

procedure DrillHoles;
{additional details I don't care about yet}

When reading the text your eye catches "procedure" and finds a
procedure declaration. Since everything else about the procedure
declaration elaborates what the name says; it will be indented to the
right. Suppose you want to learn more about how the procedure
works. Then you read in the next level of indentation.

procedure DrillHoles;

var RowScanner:integer;
var ColumnScanner:integer;
const RowSpacing=100;

180

User Manual for Motion Server and Servo Application Workbench

const ColumnSpacing=100;
const NumberOfColumns=10;
const NumberOfRows=10;

begin
for ColumnScanner:=1 to NumberOfColumns do

 {additional details I don't care about yet}
end;

The next items we are concerned with are the local variables that
help describe the problem. This procedure apparently is concerned
about rows and columns. It does some operation as many times as
there are columns. What happens for each column? Read over an-
other indentation level and read additional details:

procedure DrillHoles;

var RowScanner:integer;
var ColumnScanner:integer;
const RowSpacing=100;
const ColumnSpacing=100;
const NumberOfColumns=10;
const NumberOfRows=10;

begin
for ColumnScanner:=1 to NumberOfColumns do

 for RowScanner:=1 to NumberOfRows do
 {additional details I don't care about yet}

end;

Apparently every column the procedure works through all of the
rows and does something. This means that every row and column
intersection will be visited and something done there. What happens
at every row and column intersection? Read to the right for further
details:

procedure DrillHoles;

var RowScanner:integer;
var ColumnScanner:integer;
const RowSpacing=100;
const ColumnSpacing=100;
const NumberOfColumns=10;
const NumberOfRows=10;

181

6Douloi Pascal Language

begin
for ColumnScanner:=1 to NumberOfColumns do

 for RowScanner:=1 to NumberOfRows
DrillHole(RowScanner-1*RowSpacing,
ColumnScanner-1*ColumnSpacing);

end;

By reading further to the right we discover that every intersection
gets a hole. Note that the level of detail usually includes the "nesting"
level of the construct also. Each nexted construct should be on its
own level. The end of the level helps indicate the end of the con-
struct. Consider the following conditional case:

function
RequiredPostageForWeight(PackageWeight:single):single;

begin
if PackageWeight >= 4 then

Escape(PackageTooHeavyEscapeCode)
else if PackageWeight >= 3 then

RequiredPostageForWeight:=0.98
else if PackageWeight >= 2 then

RequiredPostageForWeight:=0.75
else if PackageWeight >= 1 then

RequiredPostageForWeight:=0.52
else

RequiredPostageForWeight:=0.29;
end;

Suppose you know that the problem with this procedure occurs
when the weight is greater than 2. Each conditional expression can be
examined and if it is not true your eye can skip down to the next
place where the level of indentation is the same. The block of in-
structions related to the conditional is indented in; and regarded as a
greater level of detail that you are concerned about. In this particular
case you want to know what happens when the condition is true.

182

User Manual for Motion Server and Servo Application Workbench

Nested indentations are particularly helpful when you are examining
nested conditions. Consider the following example:

procedure SetupCamPattern(NumberOfPoints:longint);
begin
if (NumberOfPoints mod 2) = 0 then

begin
if NumberOfPoints > 10 then

LoadShallowCam(NumberOfPoints)
else if NumberOfPoints > 4 then

LoadMediumCam(NumberOfPoints)
else

LoadDeepCam(NumberOfPoints);
end

else
Prompter.Writeln('Even Number Required');

end;

Here we read "if the number is even, do something, otherwise ex-
plain that an even number is required." To learn what happens when
the number is even you read another indentation level in. If you
don't care what happens when the number is even, your eye can just
drop down to the same indentation level of the if, to find the corre-
sponding else statement that goes with it. Keywords of a particular
structure are found at the same indentation level.

Summary

The formatting method described can help a program be more
readable to others and even to yourself at a later time. The time
required to format a program is saved many times over by the effi-
ciency with which you can study and alter the program. The format-
ting style presented here is not represented as being "best" or "stan-
dard" but simply serves as an example style that you may encounter
in example programs and software catalog components.

183

6Douloi Pascal Language

Gotchas

Purpose

Any language or tool has �gotchas�, problems that are characteristic of the
tool, typical misunderstandings, or surprises intrinsic to the structure, that
can mislead and confuse a developer. The following list may help you avoid
some standard pitfalls that often nab pascal programmers in general or
Motion Server/SAW programmers specifically.

Statements Apparently Fail to Execute

What do you suppose the following loop does?

...
while not aFile.EndOfFile do

scanner:=scanner+1
aFile.Readln(XCoord,YCoord);
XYAxis.MoveTo(XCoord,YCoord);

Prompter.Writeln(‘done’);
...

It may look like it reads a series of point pairs from a file, performs moves
to those coordinates, and then writes �done� on a display. However what
actually happens is nothing at all, except a locked system. Why? Without a
begin..end compound statement around the indented group of statements
the compiler regards the while loop as:

While not aFile.EndOfFile do
scanner:=scanner+1

The while statement performs the statement which follows, in this case an
increment. Because that statement never changes the state of aFile, the
condition never is accomplished (problem 1) and the task never yields
(problem 2). Because the loop never terminates the task overruns multiple
samples and the system locks up. The correction to this problem (after
performing a hard reset) is to enclose the instruction which are inside the
loop with a begin..end:

184

User Manual for Motion Server and Servo Application Workbench

while not aFile.EndOfFile do
begin
scanner:=scanner+1
aFile.Readln(XCoord,YCoord);
XYAxis.MoveTo(XCoord,YCoord);
end;

Display.Writeln(‘done’);

Remember that indentation, although good formatting practice, is not
recognized by the compiler. Begin..ends are recognized and must be
included to groups multiple statements into one statement for conditional
jumps and iteration.

Unexpected Escape During File Reads

A file has been written which contains on each line a coordinate pair.
The following loop reads the file but apparently attempts to perform
an extra read producing a read escape despite the loop terminating on
EndOfFile:

...
while not aFile.EndOfFile do

begin
aFile.Read(XCoord,YCoord);
XYAxis.MoveTo(XCoord,YCoord);
end;

aFile.Close;
.....

What�s the problem here? The problem is the difference between Read and
Readln. Read takes from the file enough characters to get the next variable,
in this case 2 variables, one for each coordinate. That seems correct. How-
ever read does not remove the �new line� character at the end of the line.
This won�t be removed until the next read which will remove it in its
search for the next number. On the very last line, after the very last number
pair has been read, there still remains in the file one last new line. This new
line, although containing no information, is still not the end of the file so
EndOfFile returns false at this point. The loop then attempts to read the
next number pair, removes the new line and discovers there�s nothing left
creating an escape event because a number was expected. The fix is to use
Readln instead of Read. Readln removes the new line after getting every-
thing it collects. This results in the file being empty and the loop terminat-
ing correctly.

A simple principle to help remember is to use Readln if the file was con-
structed with Writeln, and Read if the file was constructed with Write.
When you have opposite combinations bugs like this can appear.

185

6Douloi Pascal Language

Information Being Collected Does Not Change

The following fragment is supposed to collect commanded torque values in
an array to be used for plotting in another section of the application.
TorqueDataLength is the upper bound of an array named TorqueData.

...
for scanner:=1 to TorqueDataLength do

TorqueData[scanner]:=XAxis.CommandedTorque;
...

When the toque data is plotted, however, it's just a straight line. The entire
array contains just one value.

What's the problem here? The problem is that we forgot to wait for new
information. Programs have an opportunity to run every sample period.
The program containing this sample code was started on a particular
sample and because there was no instruction to yield control the entire
program, including the filling of the entire data array, occurred in one
sample. Interestingly enough for an array size of 100 the system did not
have a problem with filling the array in one sample period so there was no
overrun problem with a much longer task than the writer intended. How-
ever the torque value is only changed by calculations which occur every
sample period. Within a sample the value does not change. Without a
request to release control until the next sample period the loop simply
collects the same value of XAxis.CommandedTorque many times. The
correct and most likely intended implementation of this loop would be:

for scanner:=1 to TorqueDataSize do
begin
TorqueData[scanner]:=XAxis.CommandedTorque;
Yield;
end;

By including a "yield" instruction we are indicating that we want to wait
until the next sample period before continuing with this program. Waiting
allows the control law calculations to provide a new value so that the
TorqueData will really represent the time history of torques over many
samples.

186

User Manual for Motion Server and Servo Application Workbench

Program Locks While Waiting for Motion To Finish

The following section of code might appear in an initialization
procedure. The idea is to have the motor back up in the negative
direction until a homing switch is activated. The motor should then
stop:

...
XAxis.Jog(-40);
repeat
until InputLong(1) and Input1OnMask > 0
XAxis.Abort;

However when this procedure runs the computer locks up. Why does this
occur?

Tasks must release control every sample and not attempt to execute pro-
grams greater than their sub-millisecond time slice. The repeat...until loop
retains control for a period that might well be several seconds while the
motor is looking for the home position. The correction to this problem is
to include a yield instruction inside the repeat...until loop. The correct code
fragment is shown below.

...
XAxis.Jog(-40);
repeat
 yield;
until InputLong(1) and Input1OnMask > 0
XAxis.Abort;

Incorrect Branching When Using Masked Inputs

The following code section is written to perform a certain procedure if
Input 4 is high however the branch is never taken:

if InputLong(1) and Input4OnMask = On then
 PerformOperation;

The problem here is that On is a boolean constant with the value 1.
Input4OnMask has a value of $0008 hex. The result of the "and" expression
will either be 0 or $0008 but never 1 so the branch will never be taken.
There are two "style" solutions to this type of misunderstanding. One
approach is to use the "on" mask instead of on, ie:

If InputLong(1) and Input4OnMask = Input4OnMask
then
 PerformOperation;

187

6Douloi Pascal Language

An alternative style is to check for anything positive, i.e.:

If InputLong(1) and Input4OnMask > 0 then
 PerformOperation;

The advantage of this second style is that the input bit number, in the
Input4OnMask symbol, only occurs once. If the input was to change to
another bit you would only have to make one edit. It would be possible to
forget the second occurance of the bit number in the positive value with
the first style. Both approaches generate the same amount of code and take
the same amount of time.

Subplate Does Not Appear When Application Starts

You've constructed an application that uses a sub-plate on which you
intend to draw lines and placed into one side of the main window. How-
ever when the application starts the sub-plate is not there. Why didn't the
sub-plate get created along with the application?

Sub-plates can have different releationships to their "parent" window. Sub-
plates can be "merged", basically adding their elements to the set already on
the parent plate, "attached", where they are created as distinct windows and
get constructed when the parent gets constructed, or as "popup" windows
where they get constructed only after receiving a "PopUp" instruction.
Most likely, the plate style is "popup" and the plate is waiting for a PopUp
instruction to display itself. What was probably intended was "attached".
Double click on the plate and use the Next and Previous keys underneath
the display of the current style until you find an attached plate with the
desired border and try again.

Drawn Lines Do Not Appear On Plate 1

The following code fragment does not draw the desired line:

DrawLine(0,0,100,100);
{expecting to see line but line isn't there}

What's wrong here? In order to reduce screen flashing, a plate does not
update its appearance until you tell it to with Update. After adding all the
new geometry use Update:

DrawLine(0,0,100,100);
Update;

188

User Manual for Motion Server and Servo Application Workbench

Drawn Lines Do Not Appear On Plate 2

The following object definition describes a data structure that contains 2
vectors. The object has been given a procedure so as to draw itself on a
plate. However when used the expected line does not appear.

type GuidanceLine=object
End1:T2Vector;
End2:T2Vector;
procedure DrawOn(aPlate:TPlate);

begin
DrawLine(End1.X,End1.Y,End2.X,End2.Y);
end;

end;

What's wrong? We forgot to use the parameter to DrawOn! The idea is to
put the line on the specified plate. Why didn't we get a compiler error? If no
receiver is specified the object definition uses the nearest plate as the
receiver, in this case the plate that contains this object definition, which is
visible within the current scope. The correct object definition is shown
below.

type GuidanceLine=object
End1:T2Vector;
End2:T2Vector;
procedure DrawOn(aPlate:TPlate);

begin
aPlate.DrawLine(End1.X,End1.Y,End2.X,End2.Y);
end;

end;

Runtime Error 104

The following section of code correctly plays back motion by reading
coordinate pairs from a file. However after working correctly several times
a "Runtime error 104" is generated.

procedure PlaybackMotion;

var MotionFile:TFile;
var Destination:T2Vector;

begin
MotionFile.Assign('MoveFile.txt');
MotionFile.Reset;
While not MotionFile.EndOfFile do

begin

MotionFile.Readln(Destination.X,Destination.Y);
XYAxis.MoveToVector(DestinationVector);
end;

end;

189

6Douloi Pascal Language

What's the problem here? Assigning a file requests from the operating
system a "file handle" which is used to represent the file. Closing a file
releases the handle back to the operating system to be recycled and used
again. Because this procedure never closes MotionFile the operating system
eventually runs out of file handles and produces the run time error. The
correction is to close MotionFile before leaving the routine:

procedure PlaybackMotion;

var MotionFile:TFile;
var Destination:T2Vector;

begin
MotionFile.Assign('MoveFile.txt');
MotionFile.Reset;
While not MotionFile.EndOfFile do

begin

MotionFile.Readln(Destination.X,Destination.Y);
XYAxis.MoveToVector(DestinationVector);
end;

MotionFile.Close; {file handle now available for
use again}

end;

Nothing Happens When a DLL Call Is Made

The following Turbo Pascal for Windows routine is trying to turn on the
XAxis servo but nothing happens:

procedure SetupMachine;

var EscapeCode:integer;

begin
TNAxisSetServo(XAxis,1,EscapeCode);
...

What's wrong here? Remember that the EscapeCode parameter is both an
input as well as an output to the DLL routines. An EscapeCode value
which is not 0 instructs the DLL to not do anything because a problem has
occurred. This is corrected by setting EscapeCode to 0 before the call:

190

User Manual for Motion Server and Servo Application Workbench

procedure SetupMachine;

var EscapeCode:integer;

begin
EscapeCode:=0;
TNAxisSetServo(XAxis,1,EscapeCode);
...

191

7
Pas-
cal
Lan-
guage
Sys-
tem

Chapter

7) Predefined Types

Purpose
SAW comes with some predefined object types to help simplify the creation
of applications. The general nature of these object types are described here.
Details of the objects and their use is found in the on-line Help reference
manual.

Reading and Writing Conventions
Many objects which interact with ASCII information respond to Read,
Readln, ReadLongint, ReadlnLongint, Write, and Writeln methods. These
methods take a variable number of parameters of various types making
them much more versatile than conventional fixed parameter, fixed type
interfaces. The particular way in which an object interprets reading and
writing information varies depending on the nature of the object. TFiles
write by placing the information into a DOS file. ListBoxes write by adding
the information to the list. Text objects write by changing the currently
displayed text to an ASCII representation of the information. This uniform
ASCII interface to predefined objects simplifies programming.

In general IO error management is accomplished through the exception
mechanism. If an object is not able to read a ReadEscapeCode will be
generated. This most often occurs when a type conversion problem exists,
for example reading a value for the machine speed but having a name in the
editor rather than a number. If writing is not possible, for example a file is
not open for writing, a WriteEscapceCode will occur.

7-192

User Manual for Motion Server and Servo Application Workbench

7-193

7Predefined Types

TNVector

Description

TNVector is a generic term for the following predefined vector types:

T2Vector
T3Vector
T4Vector
T5Vector
T6Vector

These multidimensional vectors of dimension 2 through 6 are very conve-
nient for working with multidimensional axis groups, i.e. you can use a 3
dimensional vector to store the destination for the move of a three dimen-
sional machine, a T3Axis axis group.

Fields

TNVector object contain the following fields:

x:longint;
y:longint;
z:longint;
u:longint;
v:longint;
w:longint;

Vectors only contain as many components as their dimension, ie a
T3Vector does not have a U component. These components can be
handled as longints by specifying the vector name followed by a period
followed by the component name, i.e.

XAxis.MoveTo(DestinationVector.X);

194

User Manual for Motion Server and Servo Application Workbench

Methods

Vector infix operators are supported automatically because of Douloi
Pascal's component-by-component application of infix operators to every
member of an object structure. Note that vector cross or dot product
multiplication is not implied by a vector times a vector but rather compo-
nent by component multiplication. Additional methods supported by
TNVectors include:

procedure Init(X:longint;Y:longint.......);
procedure Length:longint; {returns vector magni-
tude}

Examples

Imagine that you had a three dimensional machine named "Mill". The
following button click procedure would move the mill along a constant
vector displacement each time you clicked the button. The movement is
with respect to a "BasePosition" of type T3Vector that has previously been
established.

procedure Click;
var DisplacementVector:T3Vector;

begin
DisplacementVector.Init(1000,2000,3000);
BasePosition:=BasePosition+DisplacementVector;
Mill.MoveToVector(BasePosition);
end;

The following button click procedure should write out "1414":

procedure Click;
var aVector:T2Vector;

begin
aVector.Init(1000,1000);
Prompter.Writeln(aVector.Length);
end;

195

7
Pas-
cal
Lan-
guage
Sys-
tem

Chapter

TFile (SAW only)

Description

TFiles are used to read and write information to DOS files. TFiles are an
"objectified" version of the familiar Pascal file IO conventions.
Write,Writeln,Read, and Readln, are not global procedures as in conven-
tional Pascal but rather methods to a "receiver" which indicates where the
information goes.

Methods

TFile objects respond to the following methods:

procedure TFile.Assign(Filename:string);
allocates TFile,associates file

procedure TFile.Reset;
prepares file for reading

procedure TFile.Rewrite;
prepares file for writing

procedure TFile.Close;
completes file management

procedure TFile.Write(...);
appends info to current line

procedure TFile.Writeln(...);
appends to line, advances line

procedure TFile.Read(...);
reads next item in line

procedure TFile.Readln(...);
reads next item, advances line

function TFile.ReadLongint:longint;
returns next longint in file

function TFile.ReadlnLongint:longint;
returns next longint and advances line

function TFile.EndOfFile:boolean;
indicates if file is finished

TFiles know how to Writeln and Readln information. IO Errors that might
occur during file handling are indicated with escapes, generally
ReadEscapeCode and WriteEscapeCode. TFiles operate by sending mail to
Windows which performs the DOS operations on behalf of the TFile. It is
not possible for TFiles to directly access DOS because of the DOS re-
entrance limitation. Accordingly, do not expect TFile operations to be real-
time. They are subject to physical time delays as well as Windows coopera-

196

User Manual for Motion Server and Servo Application Workbench

tive multitasking delays. An example of a physical delay is reading disk
information which is not in the disk cache requiring the hard disk read/
write heads around to get the information. An example of a Windows delay
might be dragging an application title block to move the application to a
new location. Windows "blocks" all other Windows activity until the title
bar is released,

Examples

The following code section might be used to perform a multiaxis "playback"
of vector information stored in a file named "playback.vec". Note that this
routine may be put on "hold" if Windows becomes preoccupied and does
not read its mail.

procedure PlaybackVectorFile;

var PlaybackFile:TFile;
var Destination:T2Vector;

begin
PlaybackFile.Assign('playback.vec');
PlaybackFile.Reset;
while not PlaybackFile.EndOfFile do

begin
PlaybackFile.Readln(

Destination.X,Destination.Y);
XYAxis.MoveToVector(Destination);
end;

PlaybackFile.Close;
end;

It may be important for that previous process to operate with the possibility
of interruption. The best way to handle that is to move all the information
into an array and have the system move from the array. This removes the
mail-based file IO from operating while in the midst of motion. The
following example moves information from a file into an array.

procedure FillVectorArray;

var VectorFile:TFile;
var scanner:integer;
var NumberOfVectors:integer;

begin
VectorFile.Assign('playback.vec');
scanner:=0;
while not VectorFile.EndOfFile do

begin
scanner:=scanner+1;

197

7
Pas-
cal
Lan-
guage
Sys-
tem

Chapter

VectorFile.Readln(
VectorArray[scanner].X,
VectorArray[scanner].Y);

end;
VectorFile.Close;
NumberOfVectors:=scanner;
for scanner:=1 to NumberOfVectors do

XYAxis.MoveToVector(VectorArray[scanner]);
end;

The following routine creates a file of numbers followed by their squares.

procedure WriteSquares;

var SquareFile:TFile;
var Scanner:longint;

begin
SquareFile.Assign('squares.txt');
for Scanner:=1 to 10 do

SquareFile.Writeln(
'The square of ',Scanner,
' is ',Scanner*Scanner);

SquareFile.Close;
end;

A file of vectors that might be used for a vector playback could be generated
with the following click procedures.

procedure ResetButton.Click;
begin
Recorder.Assign('playback.vec');
Recorder.Rewrite;
end;

procedure AddPointToFileButton.Click;
begin
Recorder.Writeln(XAxis.ActualPosition,'

',YAxis.ActualPosition);
end;

procedure FinishFile.Click;
begin
Recorder.Close;
end;

198

User Manual for Motion Server and Servo Application Workbench

Note that in the "AddPointToFileButton" routine the XAxis value and the
YAxis value is seperated by an additional string literal parameter which is a
space string. If this was missing the two values would be concatinated
together in the file making one very long number instead of two seperate
numbers. Also note that there is not direct support available for writing out
objects. You must write out the components of the object individually.

199

7
Pas-
cal
Lan-
guage
Sys-
tem

Chapter

TPrompter (SAW only)

Description

TPrompters are used to display some information and suspend the execu-
tion of a program until that information has been acknowledged by the
user. TPrompters are very similar to (and implemented with) the Windows
MessageBox routines. The purpose is very similar to the "Prompt" com-
mand in a DOS batch file. As well as providing a predefined type, SAW
provides a predefined instance of a TPrompter named "Prompter". Most of
the time you can simply use Prompter rather than creating your own.
TPrompters are most often used for "operator synchronization", i.e. to
write messages such as "Load the part and press ok to continue".

Methods

TPrompters respond to the following methods:

TPrompter.Init;
TPrompter.Done;
TPrompter.Write(...);
TPrompter.Writeln(...);

TPrompters know how to Write and Writeln information. For
TPrompters, write accumulators information for display, and writeln
invokes the prompter to popup. All of the accumulated information is
displayed. The TPrompter object then waits for the user to push the "ok"
button before continuing with the program.

Init and Done only need to be used if you are creating your own
TPrompter object. Note that these routines have constructor,destructor
behavior, i.e. you really have to call them if you are declaring your own
TPrompter before using any other methods or a Windows failure will
occur.

Examples

The following code section might be found in a machine that was perform-
ing a machining operation on a part:

200

User Manual for Motion Server and SAW

procedure MachinePart;
begin
Prompter.Writeln('Load next part');
PerformMachiningOperation;
end;

The following example might be used to do the same operation with an
internally provided TPrompter:

procedure MachinePart;

var PartPrompter:TPrompter;

begin
PartPrompter.Init;
PartPrompter.Writeln('Load next part');
PartPrompter.done;
PerformMachingingOperation;
end;

In the current release of SAW there is little benefit to creating your own
prompter. This technique may be useful in the future when prompters
have attributes that you would want to setup once and simply achieve by
referring to the appropriately configured prompter.

201

8
Pas-
cal
Lan-
guage
Sys-
tem

Chapter

8) Advanced Motion
Capabilities

Purpose
This section illustrates how the different features of Motion Server can be
combined to provide advanced motion capabilities. Although some motion
controllers provide these capabilities as "built in" to the controller, Motion
Server is able to provide similar capabilities at the more flexible and
tailorable application level rather than unchangeable firmware level. This
list is no way is comprehensive but serves rather to illustrate how familiar
modes might be implemented.

202

User Manual for Motion Server and Servo Application Workbench

203

8Advanced Motion Capabilities

Electronic Gearing

Description

The conventional meaning of Electronic Gearing is a "driven" shaft
rotating at some fixed speed ratio to a "driving" shaft. If the driving
shaft rotates one turn, the driven shaft rotates half a turn in the same
direction (for a ratio of 0.5, for example). If the driving shaft rotates 4
revs in the opposite direction, the driven shaft rotates 2 revs in the
opposite direction. The driven shaft behaves as if it contained a gear
in mesh with a gear on the driving shaft.

To be strictly correct, most commercial implementations of elec-
tronic gearing do not really implement the gear model since in a
mechanical system it would be possible to apply a torque to the
driven shaft that results in rotating the driving shaft. Gears trains of
high efficiency can be made to move by driving from either end. To
be less ambiguous about this case some manufacturers refer to elec-
tronic gearing more accurately as "position tracking" or "position
following" mode. Note that achieving the bi-directional behavior is
possible with Motion Server and is discussed under the "Bi-direc-
tional Force Reflection" mode.

Fundamental Principles

If we consider the case of just one shaft being the driving shaft and
the other always being the driven shaft we can state the behavior of
electronic gearing with the following statement:

Pn=Pd(Gr)

where:

Pn = Position of Driven Shaft

Pd = Position of Driving Shaft

Gr = Gear ratio

204

User Manual for Motion Server and Servo Application Workbench

Implementation

Implementing electronic gearing simply involves setting the position
of the driven axis to some factor times the position of the driving axis
every sample period. Suppose the XAxis is the driving shaft, the
YAxis is the driven shaft, and the gear ratio is to be 0.5. The following
procedure would imlpement the electronic gearing equation:

procedure PerformGearing
begin
YAxis.SetCommandedPosition(

XAxis.ActualPosition div 2);
end;

This procedure properly updates the commanded position of the
YAxis. In order for this to occur on an ongoing basis we need to
schedule the task to run every millisecond. This might be done in the
setup procedure of the main plate, or by a button's click procedure
which you push when you want the mode to begin. An example of
the latter case is:

TurnOnElectronicGearingButton.Click;
begin
ScheduleTask(TaskAddr(PerformGearing),1);
end;

In implementing any advanced mode there are behaviors which may
or may not be desirable. Often the application will clearly indicate
what the more desired behavior would be. Having the mode imple-
mented in the application level allows you to tailor the mode to be
suitable for those needs.

For example, note that the PerformGearing procedure bases the
position of the driven shaft on the actual position of the driving shaft.
This is most suitable if the driving shaft is not being servo controlled,
i.e. is a encoder based handwheel. However if the driving shaft is
under servo control this may result in a compromise in performance.
The slave not only tracks the position of the driving shaft but at-
tempts to follow the errors of the driving shaft. You may instead
really want the driven shaft to be following at a fixed ratio with
respect to where the driving shaft is supposed to be, not with respect
to where it actually is. This difference would be implemented by
referring to the XAxis commanded position rather than actual posi-
tion for the PerformGearing procedure as shown below.

205

8Advanced Motion Capabilities

procedure PerformGearing;
begin
YAxis.SetCommandedPosition(

XAxis.CommandedPosition div 2);
end;

Note that gearing of the YAxis is absolute, based on the position of
the XAxis. This may not be what's desired if you were to run the
YAxis on some other criteria and then "engage" the YAxis to be a
driven shaft at some location which is not a simple ratio of X. Ac-
complishing a "phase offset" between the YAxis and XAxis is accom-
plished by adding an offset in the PerformGearing routine. This
routine then becomes.

procedure PerformGearing
begin
YAxis.SetCommandedPosition(

XAxis.ActualPosition div 2
+ PhaseAdjustment);

end;

In this procedure PhaseAdjustment might be a global variable de-
fined in a plate procedure.

Limitations

One limitation of this approach is continuous motion gearing. If the
driving shaft was told to jog at a constant speed indefinitely, eventu-
ally there would come a point the where driving shaft "wrapped
around" its position counter. Although Jog mode handles this cor-
rectly, the driven shaft would see the driving shaft position suddenly
change from a very large positive number to a very large negative
number and attempt to jump to this new location. The system would
shut down the YAxis when it experienced this unreasonable request.
If you need to implement electronic gearing on a continuous basis
the PerformGearing routine would need to measure the change in
position of the driving shaft between this sample and the last, calcu-
late a ratio on this delta, and then add to the driven shaft position this
ratioed delta. This approach solves the continuous motion problem
but has the possibility of accumulating small errors over time. The
absolute position ratioing approach has the advantage of sustaining
no accumulating errors. Which method is best depends on the nature
of the application. Having the ability to tailor the motion mode

206

User Manual for Motion Server and Servo Application Workbench

allows you to responsd to the requirements of your particular prob-
lem. For additional details on incremental electronic gearing feel free
to call Douloi Automation.

207

8Advanced Motion Capabilities

Electronic Gearing with Trapezoidal
Phase Advance

Description

Electronic gearing most often involves a fixed phase angle between
the driving shaft and driven shaft. However there are times when
phase advancing the driven shaft is desirable. For example, a process
might note the actual position of a piece of material as being several
inches behind where it was expected to be on a moving carriage that
is being driven in electronic gearing mode. It would be appropriate to
advance that carriage ahead the lacking 2 inches while maintaining
the carriages relationship to the entire process.

Fundamental Principles

A statement of the position of a driven shaft with respect to a driving
shaft including phase advance is:

Pn=Pd(Gr) + Ta

where:

Pn = Position of Driven Shaft

Pd = Position of Driving Shaft

Gr = Gear ratio

Ta = Fixed Phase Advance

The more general expression is:

Pn=Pd(Gr) + T(t)

where:

Pn = Position of Driven Shaft

208

User Manual for Motion Server and Servo Application Workbench

Pd = Position of Driving Shaft

Gr = Gear ratio

T(t) = Phase advance angle as a function of time

Implementation

The desired phase advance angle, or total amount of phase advance,
is usually a number that results from some registration information
in the process, for example in the initial illustration the total amount
of distance that the carriage was lagging was 2 inches. The phase
advance angle shown in the equation above needs to smoothly
change in value from 0 to the desired total phase advance angle. It
would be possible to create a function which generated a smoothly
varying numeric value to use as a function in the electronic gearing
equation however this would be re-inventing the wheel. The activity
of creating smoothly varying numbers is extremely common in
motion controllers and is typically caller "profiling". The com-
manded setpoints for a motor during a trapezoidal move is calculated
by the profiler with all of the conveniences of having a settable accel,
decel, and slew. The simplest way to achieve smooth phase changes
is to make use of the profiler. The simplest way to use the profiler for
general numeric activity is through a "virtual axis".

A virtual axis behaves just like a regular axis however there is no
motor attached. In Motion Server the virtual axis are named RAxis,
SAxis, and TAxis. The RAxis has a commanded position just like the
XAxis does. The RAxis can have its accel set just like the XAxis. The
RAxis can be told to move and its commanded position will change
to the new position with the smooth motion characteristic of trap-
ezoidal motion profiles. We will take advantage of this smoothly
changing position value to implement a smooth phase advance in the
real mechanical system.

The PerformGearing procedure shown in the last motion capability
discussion is now shown here with an additional phase angle term:

procedure PerformGearing;
begin
YAxis.SetCommandedPosition(

XAxis.ActualPosition div 2
+ RAxis.CommandedPosition);

end;

209

8Advanced Motion Capabilities

Before this routine is schedule the following prepartion routine is
run, most likely in the setup procedure of the associated plate:

procedure InitializeElectronicGearing;
begin
RAxis.SetCommandedPosition(0);
RAxis.SetAccel(1);
RAxis.SetDecel(1);
RAxis.SetSpeed(10);
ScheduleTask(TaskAddr(PerformGearing),1);
end;

When this initialization routine begins, the RAxis reports as its
commanded position the value 0. The RAxis was last assigned to
have a commanded value of 0 and it has not been asked to do any-
thing yet, so it returns as its position 0. The electronic gearing begins
and operates as has been discussed. Now it is time to perform a phase
advance. This is accomplished by simply moving the RAxis to a new
location, the amount of phase advance desired. For example the
following click procedure would advance the phase by 20000 counts:

procedure AdvancePhaseButton.Click;
begin
RAxis.MoveTo(20000);
end;

The RAxis commanded position value smoothly changes from the
value 0 to the value 20000 with the well behaved properties of a
trapezoidal profile. The procedure PerformGearing is superimpos-
ing, in real time, two independent criteria for positioning the YAxis,
the electronic gearing criteria and the phase advance criteria. Super-
imposition of motion critieria is a very powerful technique yet very
easy to implement.

210

User Manual for Motion Server and Servo Application Workbench

211

8Advanced Motion Capabilities

Electronic Cam

Description

"Electronic Cam" is a motion mode where an axis performs periodic
motion based on usually a geometric specification (as distinct from
accel, decel, speed time related specifications). The axis moves back
and forth as if driven from a mechanical cam. The conceptual cam is
sometimes "driven" by an independent piece of information such as
the speed of a winding mandrel or some other uncontrolled "master"
in the machine.

Fundamental Principles

The foundational specification in an electronic cam application is the
the cam's shape. This is most easily done by representing the shape in
an array of T2Vectors. This point-pair array contains for the X com-
ponent the angular location of the point pair, and for the Y value, the
displacement of the cam at that location.The total extent of the X
component values represents 360 degrees of cam rotation. The array
should describe a "single valued" function, i.e. a curve fitting through
the points should have only one Y value for every X value. From this
array it is possible to interpolate between point-pair vectors to calcu-
late, for any arbitrary input angle, the corresponding displacement of
the cam. This "mapping" principle is then used every sample period
to calculate the commanded setpoint displacement for an axis based
on the input "angle" of the cam which can come from any source.
Examples of sources might be a "virtual axis" for profiled movement
of the cam, or an encoder monitoring the speed of an uncontrolled
axis external to the control system, or a sensor monitoring material
flow. Note that this approach does not require a large number of
vectors since interpolation can be performed between vectors.

Implementation

The main components of an electronic cam application include the
cam's descriptive geometric array, the procedure to interpolate be-
tween these descriptive points to calculate the CamOutputPosition,
and a routine to set the commanded position every millisecond based

212

User Manual for Motion Server and Servo Application Workbench

on some cam-driving criteria. An example of a descriptive cam
geometry is shown below:

X=Cam Input Position, Y=Cam Output Position

The domain, or x axis of the figure, represents the range of positions
that would be the "input" to the cam. If the cam is to "driven" by an
encoder the length of this x axis would be the encoder resolution of
this driving encoder. This would cause the cam to behave as if it was
mechanically attached to the driving encoder shaft.

The range, or y axis of the figure, represents the corresponding
displacement that should occur given an input position. Note that
the points that describe the curve are not necessarily evenly spaced.
The size of this range can match the size of displacement you would
like to achieve. If you want a variable displacement, the y axis scale of
the cam description can be set arbitrarily and the final position
calculated by multiplying the output displacement from the curve by
a scaling factor to achieve variable cam amplitudes.

The simplest way to describe a cam geometry is with an array of
T2Vectors, two dimensional vectors. The X component of any
particular vector represents the x position of the curve point in the
figure. The Y position corresponds to the amplitude of the cam's
displacement at that point. The number of vectors is determined by
the number of points you would like to use to describe the cam. In
the figure, 9 points are used. The array is most easily created as a
SAW "plate" variable. The conventional declaration is shown below:

const CamArrayLength=9;
var CamArray:array[1..CamArrayLength] of T2Vector;

213

8Advanced Motion Capabilities

There are many ways to fill the array with information. You can read
information from a file, calculate the cam geometry, or simply assign
it. The following procedure would initialize the cam geometry with a
set of values covering a domain of 2000 counts:

procedure FillCamArray;
begin
CamArray[1].Init(0,200);
CamArray[2].Init(400,250);
CamArray[3].Init(600,700);
CamArray[4].Init(900,800);
CamArray[5].Init(1100,900);
CamArray[6].Init(1200,900);
CamArray[7].Init(1300,400);
CamArray[8].Init(1500,300);
CamArray[9].Init(2000,200);
end;

You would probably want to call this procedure in the setup routine
of your main plate so as to have it all ready to go when the applica-
tion starts. The X values range from 0 to 2000, always increasing. The
Y values range from 200 to 1000. Note that the last value Y value is
the same as the first. This is important since a physical cam has a
continuous position and does not suddenly change displacement.
This software cam needs to be continuous also at the "wrap around"
point. Y displacement motion should flow smoothly off the "end" of
the cam array and connect to the start of the array by having the same
value at both ends.

The next step is to create a function which will provide a displace-
ment value given any number between 0 and 2000, the range of cam
rotation. This will be accomplished by interpolating between the
points provided that specify the cam. The function
CamOutputPosition is shown below.

function
CamOutputPosition(InputPosition:longint):longint

var BeforeVector:T2Vector;
var AfterVector:T2Vector;
var DeltaVector:T2Vector;
var scanner:integer;
var AfterVectorFound:boolean;

begin
InputPosition:=InputPosition mod 2000;
AfterVectorFound:=false;
scanner:=2
repeat

214

User Manual for Motion Server and Servo Application Workbench

if CamArray[scanner].X > InputPosition then
AfterVectorFound:=true

else
begin
scanner:=scanner+1;
if scanner > CamArrayLength then

Escape(CamOutputPositionFailure);
end;

until AfterVectorFound;

AfterVector:=CamArray[scanner];
BeforeVector:=CamArray[scanner-1];
DeltaVector:=AfterVector-BeforeVector;
CamOutputPosition:=BeforeVector.Y

+ DeltaVector.Y*(CamInputPosition
- BeforeVector.x) div DeltaVector.X

end;

The procedure starts by using the "mod" operator. The InputPosition
could represent any rotational location. The "mod" provides the
remainder of rotation realized after all of the integer number of turns
have been removed giving a number in the range 0 to 1999. A loop is
then performed which scans through the CamArray looking for the
vector which is "next" to the InputPosition on the high side. The
technique shown here is a simple linear search, suitable for arrays of
less than 20 vectors or so. If you have more vectors you can save time
with a "binary search" technique. Consult Douloi Automation for
further recommendations if you have a high resolution CamArray.
The vector found beyond the InputPosition is called the AfterVector.
The BeforeVector is the previous one. The InputPosition lies in
between. The DeltaVector is the difference, in both X and Y, be-
tween the AfterVector and the BeforeVector, i.e. the DeltaVector is
what gives you the AfterVector when added to the BeforeVector.
Note that the DeltaVector is quite simply calculated as the difference
between the two vectors. Douloi Pascal supports infix operators on
vectors for addition and subtraction. The CamOutputPosition is
then calculated to be the Displacement of the BeforeVector plus an
additional amount based on scaling the difference between the
vectors by the excursion into that section of the CamArray.

To achieve motion with the cam array a procedure must be written
that "connects" system information to the cam. Let's suppose that the
ZAxis is being used to provide the cam input position, i.e. the Z axis
encoder is connected to a section of the machine, perhaps externally
driven, that represents where the electronic cam should be. The
XAxis displacement will be the electronic cam output. The following

215

8Advanced Motion Capabilities

procedure would make the connection between these elements:

procedure SetCamPosition;
begin
XAxis.SetCommandedPosition(

CamOutputPosition(ZAxis.ActualPosition));
end;

It may be desirable to scale the cam output so as to provide various
sized cams. This routine is a good place to do such scaling such as
the variation below shows:

procedure SetCamPosition;
begin
XAxis.SetCommandedPosition(

round(CamOutputPosition(
ZAxis.ActualPosition)*1.53));

end;

In order for this cam to take effect the procedure SetCamPosition
needs to operate every millisecond. This is done by scheduling the
cam to run with ScheduleTask. A good place for this might be a
button click procedure. Note that the first step, before scheduling the
task to run, is to get the XAxis in position so that no sudden change
in position occurs when the cam "engages":

procedure Click;
begin
XAxis.MoveTo(

round(CamOutputPosition(
ZAxis.ActualPosition)*1.53));

ScheduleTask(TaskAddr(SetCamPosition),1);
end;

If you are planning to scale the cam it is better to create a constant to
represent the number and use that constant (i.e. const
CamScaleFactor=1.53). Note that the constant appears in two
seperate places - the SetCamPosition routine and the button click
procedure which needs the information so as to contact the cam with
the XAxis before engaging the cam. Using constants helps these two
different uses of the information "stay in synch".

216

User Manual for Motion Server and Servo Application Workbench

Limitations

An electronic cam is a geometric description of what will become a
movement. It is quite possible to create cam geometries which are
unrealistic (just as there can be unrealistic mechanical cam geom-
etries). Sudden changes in the slope of the cam produce large accel-
erations. Slopes of the cam represent speeds. There will be a cam
input velocity beyond which the servo will not be able to track. The
Slew, Accel, and Decel that describe a trapezoidal profile do not
come into play here since electronic camming is providing another
basis for determining the motor's commanded position. With the
flexibility of specifying an arbitrary commanded set point for the
motor comes the responsibility of making sure that you ask the
motor to do something reasonable. In this type of application the
main expression of what constitutes reasonable or unreasonable is in
the shape described by the cam geometric array. Douloi Automation
is available to assist you through any misunderstandings that may
occur in the application of this technique. Please feel free to call.

217

8Advanced Motion Capabilities

Tangent or "Knife Cutter" Servoing

Description

Tangent of "Knife Cutter" servoing is a motion mode where an axis,
often the ZAxis, controls an oriented tool, such as a knife, while the
X and Y axis are performing a contour. As the X and Y axis move, the
Z continually needs to reorient the knife so that the knife is cutting
in the direction of motion rather than scraping sideways against it.
The method shown has the capacity to orient the knife to the actual
contour experienced, not just the commanded contour intended.

Fundamental Principles

The basic approach is to monitor the displacements of the X and Y
axis. When the displacement is numerically significant, the arc
tangent function in the math coprocessor is used to calculate what
angle represents this current direction of travel. The ZAxis is then
told to move to this angle. The tricky thing about tangent servoing is
handling "wind up" correctly. For example, if you were cutting a
spiral on a planar surface, such as the groove in an LP record, the
range of angles returned by an arctangent function would always be
in the range +180 to -180. However, you don't want the knife to spin
360 degrees as you cross through the angle that on one side is -180
and on the other is +180. Although -180 and 180 are the same angle,
they are 360 degrees apart from the servo's point of view. In order to
prevent the ZAxis from "snapping" backwards with 360 degree spins
some additional measures must be taken to track total angular accu-
mulation.

Implementation

The following procedure calculates the appropriate angle for a
tangent servoing application:

function TangentAngle:longint;

var AnchorVector:T2Vector; static;
var CurrentVector:T2Vector;
var DeltaVector:T2Vector;
const NumericThreshold=50;

218

User Manual for Motion Server and Servo Application Workbench

var CurrentAngle:single;
var LastAngle:single; static;
var RevAccumulator:longint;
var LastAnswer:longint;

begin
XYAxis.GetActualPositionVector(CurrentVector);
DeltaVector:=CurrentVector-AnchorVector;
if DeltaVector.Length > NumericThreshold then

begin
FPushLongint(DeltaVector.Y);
FPushLongint(DeltaVector.X);
FPArcTan;
PopSingle(CurrentAngle);
if CurrentAngle - LastAngle > pi then

RevAccumulator:=RevAccumulator-1
else if CurrentAngle-LastAngle < -pi then

RevAccumulator:=RevAccumulator+1;
LastAngle:=CurrentAngle;
AnchorPosition:=CurrentPosition;
LastAnswer:=

round((CurrentAngle/
(2*pi)+RevAccumulator)*CountsPerRev);

end
TangentAngle:=LastAnswer;
end;

The variables identified as "static" in the declaration section are best
defined in a plate procedure rather than in this procedure so that they
can be initialized prior to their use here. The AnchorVector repre-
sents a base point from which an angle calculation will be made. The
DeltaVector is calculated as the different between the current posi-
tion and the anchor. When the length of the delta vector is large
enough, we can expect there to be good numeric resolution for
calculating the angle. Without this check we'd be taking the arctan of
displacements of only a few counts leading to very quantized calcula-
tions. The math coprocessor is needed to perform the actual arctan
function real time. The FInit function should be placed in the plate
setup procedure to prepare the math coprocessor for use. After
calculating the arctan, the RevAccumulator is maintained by check-
ing for "large leaps" in position. Such large leaps are indicitive of
crossing over the arctan range and for the actual motion system
represent accumulated rotations of the cutting knife. If sufficient
movement for good numeric resolution has not occured yet, the
function just returns the last answer from the previous calculation.

219

8Advanced Motion Capabilities

In order to have the knife cutter move by this calculation a relation-
ship between the calculation and the mechanism must be made. This
is provided by the following procedure:

procedure SetTangentAxis:
begin
Try

ZAxis.BeginMoveTo(TangentAngle)
Recover

begin
if EscapeCode <> MotionOverrunEscapeCode then

Escape(EscapeCode);
end;

end;

SetTangentAxis tells the ZAxis to begin moving to the
TangentAngle. This motion is performed with a trapezoidal velocity
profile so that the ZAxis moves in a well behaved manner regardless
of how suddenly the angle might change, i.e. turning a right angle
corner during the cutting operation. BeginMoveTo is used instead of
MoveTo because it is necessary to immediately continue calculating
the angle. It is quite likely that the ZAxis will never get to the first
destination since the destination will be updated on the next sample
giving the ZAxis a continually moving target for the motion. The
recover block is provided to catch the case where the ZAxis is not
able to turn around quickly enough (Motion Overrun). In this case
the ZAxis will simply stop (which is necessary if you need to turn
around) and will be able to head towards the destination the next
time around when that move request is made again. Some applica-
tions may require a "snappier" response from the ZAxis. These
application can simply set the ZAxis position directly from the angle
information and go around the profiler. This routine would then be
just:

procedure SetTangentAxis;
begin
ZAxis.SetCommandedPosition(TangentAngle);
end;

The only problem with this is the sudden change that will be asked
of the ZAxis if the XYAxis makes a sharp corner. This could result in
sudden and surprising motion as well as more demands on the power
electronics and mechanical structure than is necessary for the appli-
cation.

220

User Manual for Motion Server and Servo Application Workbench

For SetTangentAxis to have an ongoing effect it must scheduled. The
following routine might be placed in a click procedure for a button
named "engage":

procedure Click;
begin
LastAngle:=0;
XYAxis.GetActualPosition(AnchorPosition);
RevAccumulator:=0;
LastAnswer:=0;
ZAxis.MoveTo(0);
ScheduleTask(Addr(SetTangentAxis),1);
end;

This procedure resets some of the variables used to recognize
changes in system state, moves the ZAxis to an initial position, and
schedules the SetTangentAxis routine to run every controller sample.

Limitations

As illustrated, angles are based on the actual positions that the ma-
chine realizes. This may be good or bad, depending on the nature of
the application. For machines where the X and Y axis are
handwheels, this technique could allow automatic rotation of the
knife while an artist directed the contour. If the motion is machine
generated, it is possible to base the CurrentVector not on the actual
machine positions but rather on the commanded positions providing
a smoother theoretical basis for the angle rather than empiral basis.
The value of NumericThreshold must tradeoff between being small
enough to not delay the calculation of an angle in a timely way while
at the same time not being so small that the quantization effect causes
the knife to move in a "chunky" manner.

221

8Advanced Motion Capabilities

Bi-directional Force Reflection

Description

Bi-directional force reflection is a more complete implementation of
electronic gearing. With a physical gear train of high efficiency it is
possible to apply torque to either end of the drive train and have
motion result. If opposing torques are encountered by the output end
of the gear train those torques are realized at the driving end of the
gear train. This section describes how to implement such a bi-
directional behavior for a gear ratio of 1 to 1.

Fundamental Principles

The following figure shows an elastic shaft model that will be used to
determine how to implement bi-directional force reflection.

One end of the shaft represents a master joint and the other end of
the shaft represents the corresponding slave joint. Consider the case
that the slave has encountered an obstacle and, constrained not to
rotate, is temporarily grounded. A torque applied to the master end
of the shaft causes an angular strain, theta, proportional to that ap-
plied torque. Half way down the length of the shaft a strain of Theta/
2 has occurred. The �point of symmetry� in this problem is the
middle of the shaft since either mechanism can direct the system

222

User Manual for Motion Server and Servo Application Workbench

behavior in force reflection mode. By establishing a reference frame
along the rotated theta/2 section of the shaft midpoint; it can be seen
that each end of the shaft is attempting to elastically return to 0
angular displacement with respect to this frame.

The most fundamental behavior of a position servo is to apply a
restoring torque proportional to an angular displacement from a
commanded set point. Accordingly, one simple implementation of
bi-directional force reflection is to use a PD position servo for each
mechanism and continually command each servo to move to the
average position of the two.

Implementation

Implementing bi-directional force reflection requires continually
calculating the average position between the driving, master end of
the shaft and the driven, slave end of the shaft. This might be imple-
mented with a procedure such as is shown below.

procedure PerformForceReflection

var AveragePosition:longint;

begin
AveragePosition:=

(XAxis.ActualPosition+YAxis.ActualPosition)
div 2;

XAxis.SetCommandedPosition(AveragePosition);
YAxis.SetCommandedPosition(AveragePosition);
end;

The procedure PerformForceReflection will need to operate on a
continual basis. Before turning it on, however, it would be good for
one of the two axis to move to the position of the other so as to not
have a sudden change in position expected on the first sample. An
appropriate procedure to launch the force reflection might be.

TurnOnForceReflection.Click;
begin
YAxis.MoveTo(XAxis.ActualPosition);
ScheduleTask(Addr(PerformForceReflection),1);
end;

begin
YAxis.SetCommandedPosition(

XAxis.ActualPosition div 2 +
PhaseAdjustment);

end;

223

8Advanced Motion Capabilities

Limitations

For force reflection to work it is necessary for the integrators of the
servos to be off; i.e. XAxis.SetIntegrator(0) and
YAxis.SetIntegrator(0) or the "elastic" behavior, which the method is
based on, is not operating. Also note that there should be no signifi-
cant torque offsets. A torque offset cannot be distinguished from an
external torque, each producing a position error that results in the
opposite axis following and both motors spinning even without an
external torque.

224

User Manual for Motion Server and Servo Application Workbench

225

9
Pas-
cal
Lan-
guage
Sys-
tem

Chapter

Using the ServoLib Dynamic
Link Library

Purpose
There are several ways to make use of the ServoLib DLL to simplify the
construction of motion control Windows applications. This section de-
scribes alternative techniques and provides a command reference that
provides the needed information to link to the library from your own
Windows programming environment.

Functionality through Douloi Pascal
It is possible to access the multitasking capabilities and high speed program
execution of Douloi Pascal from your Windows language system. In this
approach you would write, as a conventional text file, Douloi Pascal proce-
dures and variable declarations such as in the tutorial and example pro-
grams for SAW. You then have your application compile this text file into
high speed object code through a ServoLib DLL call. After the program has
been compiled, the Douloi Pascal routines can be started or scheduled to
run periodically through the DLL. This approach is very useful when you
want high speed performance even though your Windows language system
might not be high speed (i.e. an interpreted environment). This also allows
you to start special behaviors such as electronic gearing or tangent servoing
which operate on their own while you manipulate the servo system
through other means.You are not able to access SAW objects with this
approach because SAW is not present; however much of the real-time
system behavior that you have studied in the Servo Application Workbench
can be accessed.

Functionality through Direct Calls
It is also possible to access primarily the motion system through direct DLL
calls. These calls have basically the same names as their Douloi Pascal
method names with the exception of procedures with dimension-depen-
dent parameter list lengths. These procedure names are prefixed with their
class name. A syntax rearrangement is needed since DLL's do not support
object syntax as part of the interface definition. Parameters from a normal

226

User Manual for Motion Server and Servo Application Workbench

object procedure call become sandwiched between a new first parameter,
which is the receiver, and a new last parameter, which is the error code.
For example, if you wanted to move the XAxis by 20000 counts in Douloi
Pascal you would type:

XAxis.MoveBy(20000);

Any problems with this procedure would result in an escape. Using the
DLL interface however, you must type:

T1AxisMoveBy(XAxis,20000,ErrorCode);

The first parameter is what had been the receiving object in Douloi Pascal.
The last parameter is filled with what would have been an escape code in
Douloi Pascal. ErrorCodes of 0 indicate that no problem was encountered.
The exact syntax is governed by the nature of your language system.
Included is a "DLL Interface Unit" for Borland Pascal, Borland C++, and a
Global File for Visual Basic.

Direct calls are very helpful when you are programmably deciding what to
do and cannot afford to wait for the compiler to process new Douloi Pascal
programs for you. The best strategy is to use both approaches at the same
time, each one doing what it does best. You can compile and "spawn"
processes which perform real-time custom coordination or data collection
activities on their own while you direct the motion of the motors with
direct DLL calls.

Usage
You are free to make direct calls and access the functionality of the Servo
Library only after you have first called InitializeServoSystem. This call
prepares the system for operation. If you forget to make this call the DLL
will fail and cause your application (and possibly development system) to
fail with it resulting in loss of work and a restart of your application devel-
opment environment.

Most functions take a pass-by-reference integer parameter for reporting
escape code information. After a call, this error reporting variable will be 0
if all went well and non-zero to indicate the particular error. In all cases
except InitializeServoSystem, this variable is also an input parameter. If the
value is not 0 the call will immediately exit and not attempt the operation
leaving the variable unchanged. This allows you to construct linear se-
quences of motion system calls without having to constantly check if a
failure occurred. If a failure does occur in the sequence; the offending
routine exits with a non-zero error code and subsequent commands will be
internally skipped. At the end of the sequence, you can interrogate the

227

9Using the Servolib Dynamic Link Library

variable to determine if the entire sequence operated correctly or if there
was a problem. Example1 demonstrates this technique. If you do detect that
an error has occured, you must set the error variable to 0 yourself before
making another call. Otherwise the routine will see the non-0 error code
and not even attempt its operation.

Examples on the uses of the DLL are provided in the following secitons.
The same set of examples is implemented in the four language systems:
Turbo C++, Turbo Pascal for Windows, Visual Basic, and Servo Applica-
tion Workbench (for comparison purposes). Skip the languages you are not
concerned with and go to the examples in your language system. The
interface mechanism (i.e. prototype headers and .LIB file for C++ ,
interface unit for TPW, and global library declarations for VB) is provided
in the appropriate LINK2xxx directory. If your language system supports
projects then open up the examples as projects. The examples should clarify
the details of usage.

Note that, conforming to the Windows API model, pointers are manipu-
lated as longints, the cross-language universal 32 bit pointer type, offering
the most general usage but least pointer-type protection.

The details of the DLL commands are found in the help system. Click on
"DLL Command Reference" from the help index. The following pages
provides some example programs of how the DLL might be used.

For those first moving to C++ or Visual Basic from a Pascal background/mindset be
aware that the following action, quite intuitive and correct to a Pascal programmer,
will create a compiler-detected but non-obvious error:

SetServo(XAxis,1,ErrorCode);

Although this looks completely reasonable it does not work. Procedures and functions
in both C++ and Visual Basic must have parameter parenthesis even if they don't
have parameters. Without the parenthesis, both languages interpret XAxis as some-
thing besides the XAxis function in the ServoLib and the program does not compile.
Remember to add an empty parameter list to all procedures and functions, i.e.

TNAxisSetServo(XAxis(),1,ErrorCode);

228

User Manual for Motion Server and Servo Application Workbench

229

9Using the Servolib Dynamic Link Library

Turbo Pascal for Windows DLL
Examples

Turbo Pascal for Windows makes use of the ServoLib DLL most conve-
niently through the ServoInt Interface unit. This unit should be "included"
in the uses clause of your program. Actual access to the DLL is performed
by references from ServoInt. You may find it necessary to edit ServoInt if
you intend to locate the ServoLib DLL in a directory different from the
current directory when your application runs.

The following examples illustrate how calls can be made to the motion
system as well as the compiler.

TPW Example 1 - Direct Access

Description

This example uses direct calls to move the XAxis motor to several
different locations and to write out commanded position informa-
tion. This would represent the simplest use of ServlLib.

Source Code

{***}
{***}
{********** **********}
{********** TPW DLL Example 1 **********}
{********** **********}
{**********---**********}
{********** Created By: Randy Andrews | Creation Date: 05-oct-92 **********}
{**********---**********}
{********** Description **********}
{********** **********}
{********** This represents a simple program to move the XAxis **********}
{********** to several different positions. This illustrates **********}
{********** initialization and direct calls. **********}
{********** **********}
{***}
{***}

230

User Manual for Motion Server and Servo Application Workbench

program TPWDLL_1;

uses
 ServoInt,
 WinCrt;

var ErrorCode:integer;

begin
Writeln(‘TPW DLL Example 1’);
InitializeServoSystem(800,0, ErrorCode);
EngageHighSpeedClock(ErrorCode);
TNAxisSetServo(XAxis, 1, ErrorCode);
T1AxisMoveTo(XAxis, 0, ErrorCode);
T1AxisMoveTo(XAxis, 5000, ErrorCode);
T1AxisMoveTo(XAxis,10000, ErrorCode);
T1AxisMoveTo(XAxis, 0, ErrorCode);
T1AxisMoveBy(XAxis, 2000, ErrorCode);
T1AxisMoveBy(XAxis,-4000, Errorcode);
T1AxisMoveTo(Xaxis, 0, Errorcode);
Writeln(T1AxisCommandedPosition(XAxis));
if ErrorCode <> 0 then

begin
MessageBox(0,'Motion Problem','Status',mb_ok);
ErrorCode:=0; {note need to explicitly set error code to 0}
end;

TNAxisSetServo(XAxis, 0, ErrorCode);
DisengageHighSpeedClock;
Writeln(‘done’);
end.

Explanation

The first operation performed with the motion system is its initializa-
tion. The initialization routine sets the error code variable to 0. After
initializing the servo system the XAxis is directed to move to differ-
ent destinations. It is extremely important that the dimension of the
procedure match the dimension of the function, ie T1AxisMoveTo
should only be used with a T1Axis parameter.

Note that, while motion is ocurring, Windows interaction comes to a
halt. By using the MoveTo and MoveBy routines the program waits
for the moves to finish. Although simple to synchronize, this ap-
proach is very limiting for an interactive application. The following
examples show ways to not have this limitation.

231

9Using the Servolib Dynamic Link Library

TPW Example 2 - Direct Access

Description

This example expands on the first by starting a motion and then
performing another operation while the motion is taking place.

Source Code

{***}
{***}
{********** **********}
{********** TPW DLL Direct Call Example 2 **********}
{********** **********}
{**********---**********}
{********** Created By: Randy Andrews | Creation Date: 12-oct-92 **********}
{**********---**********}
{********** Description **********}
{********** **********}
{********** This moves an axis while performing other activities **********}
{********** during the move. This illustrates the use of direct **********}
{********** calls to learn about motion status during movement. **********}
{********** **********}
{***}
{***}

program TPWDLL_1;

uses
 ServoInt, {interface unit to ServoLib DLL}
 WinCrt; {"conventional" system IO simulation unit}

var ErrorCode:integer;
var MoveOver:boolean;
var MoveDurationCounter:longint;

begin
Writeln('TPW DLL Example 2');
MoveDurationCounter:=0;

InitializeServoSystem(800,0,ErrorCode);
EngageHighSpeedClock(ErrorCode);
SetServo(XAxis, 1,ErrorCode);

T1AxisBeginMoveBy(XAxis,50000,ErrorCode);
if ErrorCode <> 0 then

begin
Writeln('Motion System Problem: ',ErrorCode);
DisengageHighSpeedClock;
exit;
end;

232

User Manual for Motion Server and Servo Application Workbench

writeln('Free to continue...');
repeat

MoveOver:=MoveIsFinished(XAxis,ErrorCode);
if ErrorCode <> 0 then

begin
Writeln('Interogation problem');

 DisengageHighSpeedClock;
exit;
end;

{Perform other operations here while waiting}
Inc(MoveDurationCounter);

until MoveOver;
Writeln('Move Duration Counter: ',MoveDurationCounter);
Writeln('done');
end.

Explanation

As in the first example, the first operation is to initialize the system.
Instead of performing motion with "MoveBy" and "MoveTo" the
command "BeginMoveBy" is used. Commands that start with "Be-
gin" imply that they do not wait for their operation to be complete.
The move is started and program execution immediately continues.
The program then performs other operations (in this case simply
incrementing a variable) and periodically checks to see if the motion
is completed by interrogating the servo system to find out when
motion is complete.

Although a small improvement over the first example in terms of
allowing other operations to continue during the motion program,
this is not a very complete solution either. Although other activities
can occur during motion Windows is still "locked out" (i.e. try to
move the window by dragging on the title bar during operation of
the motion). The next example illustrates how to have an indepen-
dent motion program operating at the same time as Windows inter-
action.

233

9Using the Servolib Dynamic Link Library

TPW Example 3 - Combined Access

Description

This example uses a seperate Douloi Pascal program to operate the
XAxis while Windows continues operation in an independent man-
ner.

Douloi Pascal Source Code

{Douloi Pascal Program for DLL Example 3}
{filename: ManyMove.dps}

procedure PerformManyMoves;
begin
XAxis.MoveTo(10000);
XAxis.MoveTo(0);
XAxis.MoveTo(20000);
XAxis.MoveTo(0);
XAxis.MoveTo(30000);
XAxis.Moveto(0);
XAxis.MoveTo(40000);
XAxis.MoveTo(0);
end;

Source Code

{***}
{***}
{********** **********}
{********** TPW DLL Direct Call Example 3 **********}
{********** **********}
{**********---**********}
{********** Created By: Randy Andrews | Creation Date: 13-oct-92 **********}
{**********---**********}
{********** Description **********}
{********** **********}
{********** This illustrates how to begin a seperate task to **********}
{********** perform motion while Windows continues to perform **********}
{********** operations with the user. **********}
{********** **********}
{***}
{***}
program TPWDLL_3;

uses
ServoInt, {interface unit to ServoLib DLL}
WinCrt; {"conventional" system IO simulation unit}

var ErrorCode:integer;
var BookMark:array[0..79] of char;

234

User Manual for Motion Server and Servo Application Workbench

var ErrorString:array[0..79] of char;
var Row,Column:integer;

begin
Writeln('TPW DLL Example 3');

InitializeServoSystem(800,0,ErrorCode);
Writeln('Initializing Compiler...');
InitializeCompiler;
Writeln('Compiling Program...');
Compile('..\ManyMove.dps',BookMark,Row,Column,ErrorCode,ErrorString);
if ErrorCode <> 0 then

begin
writeln('Compiler problem: ',ErrorCode);
exit;
end;

EngageHighSpeedClock(ErrorCode);
SetServo(XAxis, 1,ErrorCode);

BeginTask(TaskAddr('PerformManyMoves'),ErrorCode);
if ErrorCode <> 0 then

begin
Writeln('Problem starting procedure PerformManyMoves');
exit;
end;

Writeln;
Writeln('Task launched, TPW program done.');
Writeln('Do not forget to turn off ignition before');
Writeln('leaving Windows.');
end.

Explanation

Examples 1 and 2 could have been done with a conventional PC
based motion control card. This example is the point where Motion
Server's architecture begins to make a contribution. The motion task
is specified in the file ManyMove.dps (dps stands for Douloi Pascal
Source). Note that the program is written in Douloi Pascal and not
in the language of your DLL invoking host environment (i.e. not in
TPW or C++ or VB).

This program is then compiled by your program at run-time through
the Compile command implemented in the ServoLib DLL. The
different parameters given to the Compile command help focus in
on where errors are located in the event there is a mistake in the
Douloi Pascal program. Note that InitializeCompiler needs to called
before you use the Compile command, however it only needs to be
called once at the beginning of the application regardless of the

235

9Using the Servolib Dynamic Link Library

number of times Compile is used. Most of InitializeCompiler's
activity is including the "system constants" that are described in the
file STANDARD.INC. If you do not use these constants you can
reduce the time delay of InitializeCompiler by deleting the symbols
you do not need.

The host program then begins the Douloi Pascal program with the
command BeginTaskAtCName (as distinct from a pascal style
name). Strings in ServoLib are passed as null terminated, "ASCIIZ"
strings, or "C style" strings. The motion program is now operating,
running the motor, while the host Windows application is free to do
whatever it would like, including terminating! The motion system is
quite independent of any particular Windows application once it has
been started and does not required the application to remain present
to operate. This degree of independence requires some thoughtful
consideration since you would not want to start an operation and
then lose the means of stopping it. Also note that an operating mo-
tion program will continue to operate even if the Windows applica-
tion that started it experiences a UAE. For these reasons it is a good
idea to hook up a hardware switch to one of the several User Disable
inputs so as to be able to shutdown the motion system in the event
that your Windows application does not perform as expected.

Note that the program turns on the high speed clock, but does not
turn it off. You must turn off the high speed clock yourself with the
ServoIgnition utility, or more likely, in the close procedure of your
Window applications Main Window. Make sure the "ignition is
turned off" before leaving Windows or invoking a DOS shell.

236

User Manual for Motion Server and Servo Application Workbench

237

9Using the Servolib Dynamic Link Library

Turbo C++ for Windows DLL
Examples

To make use of the ServoLib DLL from a Turbo C++ application, place
an include directive in the application source code that includes the
ServoLib.h header file. You will also need to include as a component to the
project the ServoLib.Lib file through Project\Add.

The following examples illustrate how calls can be made to the motion
system as well as the compiler.

C++ Example 1 - Direct Access

Description

This example uses direct calls to move the XAxis motor to several
different locations and to write out commanded position informa-
tion. This would represent the simplest use of ServlLib.

Source Code

// Borland Turbo C++ Example 1
// The following example is based on a borland Object Windows Library demo
// program and must be compiled with OWL

#include <owl.h>
#include “tcwdll_1.h”
#include “\servo\servolib.h” // header file for ServlLib DLL

int ErrorCode;

class TMotionApp : public TApplication {
public:

TMotionApp(LPSTR Name, HINSTANCE hInstance,
HINSTANCE hPrevInstance, LPSTR lpCmd,

int nCmdShow)
: TApplication(Name, hInstance,

hPrevInstance, lpCmd, nCmdShow) {};
virtual void InitMainWindow();

};

238

User Manual for Motion Server and Servo Application Workbench

class TTestWindow : public TWindow {
public:

TTestWindow(PTWindowsObject AParent, LPSTR ATitle);
virtual void CMCreate(TMessage& Msg) = [CM_FIRST + CM_CREATE];

};

TTestWindow::TTestWindow(PTWindowsObject AParent, LPSTR ATitle)
: TWindow(AParent, ATitle)

{
AssignMenu(“COMMANDS”);

}

void TTestWindow::CMCreate(TMessage&)
{

InitializeServoSystem(800,808,&ErrorCode);
EngageHighSpeedClock(&ErrorCode);
SetServo(XAxis(), 1,&ErrorCode);
T1AxisMoveTo(XAxis(), 0,&ErrorCode);
T1AxisMoveTo(XAxis(), 5000,&ErrorCode);
T1AxisMoveTo(XAxis(),10000,&ErrorCode);
T1AxisMoveTo(XAxis(), 0,&ErrorCode);
T1AxisMoveBy(XAxis(), 2000,&ErrorCode);
T1AxisMoveBy(XAxis(),-4000,&ErrorCode);
T1AxisMoveTo(XAxis(), 0,&ErrorCode);
if (ErrorCode != 0) then
{

MessageBox(HWindow,"Motion Problem","Status",MB_OK);
ErrorCode = 0;

}
MessageBox(HWindow,"Motion Done","Status",MB_OK);
DisengageHighSpeedClock();

}

void TMotionApp::InitMainWindow()
{

MainWindow = new TTestWindow(NULL, “Motion Application”);
}

int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmd, int nCmdShow)

{
TMotionApp MotionApp(“Motion Application”, hInstance, hPrevInstance,

lpCmd, nCmdShow);
MotionApp.Run();
return(MotionApp.Status);

}

239

9Using the Servolib Dynamic Link Library

Explanation

After initializing the servo system the XAxis is directed to move to
different destinations. It is extremely important that the dimension of
the procedure match the dimension of the function, ie
T1AxisMoveTo should only be used with a T1Axis parameter.

Note that, while motion is ocurring, Windows interaction comes to a
halt. By using the MoveTo and MoveBy routines the program waits
for the moves to finish. Although simple to synchronize, this ap-
proach is very limiting for an interactive application. The following
examples show ways to not have this limitation.

240

User Manual for Motion Server and Servo Application Workbench

C++ Example 2 - Direct Access

Description

This example illustrates how to perform other program activities
during a motion.

Source Code

// Borland Turbo C++ Example 1
// The following example is based on a borland
// Object Windows Library demo program and must
// be compiler with OWL

#include <owl.h>
#include "tcwdll_2.h"
#include "servolib.h" // header file for ServlLib DLL

int ErrorCode;
long MoveDurationCounter;

class TMotionApp : public TApplication {
public:
 TMotionApp(LPSTR Name, HINSTANCE hInstance,

 HINSTANCE hPrevInstance, LPSTR lpCmd,
 int nCmdShow)

 : TApplication(Name, hInstance,
 hPrevInstance, lpCmd, nCmdShow) {};

 virtual void InitMainWindow();
};

class TTestWindow : public TWindow {
public:
 TTestWindow(PTWindowsObject AParent, LPSTR ATitle);
 virtual void CMStart(TMessage& Msg) = [CM_FIRST + CM_START];
};

TTestWindow::TTestWindow(PTWindowsObject AParent, LPSTR ATitle)
 : TWindow(AParent, ATitle)
{
 AssignMenu("COMMANDS");
}

void TTestWindow::CMStart(TMessage&)
{

InitializeServoSystem(800,808,&ErrorCode);
MoveDurationCounter=0;
EngageHighSpeedClock(&ErrorCode);
SetServo(XAxis(), 1,&ErrorCode);
T1AxisBeginMoveBy(XAxis(),50000,&ErrorCode);

241

9Using the Servolib Dynamic Link Library

MessageBox(HWindow,"Free To Continue","Status",MB_OK);

 while (MoveIsFinished(XAxis(),&ErrorCode) == 0)
 MoveDurationCounter++;

 if (ErrorCode != 0)
 {

MessageBox(HWindow,"Motion Problem","Error",MB_OK);
ErrorCode=0;

 }
 MessageBox(HWindow,"Motion Done","Status",MB_OK);
 DisengageHighSpeedClock();
}

void TMotionApp::InitMainWindow()
{
 MainWindow = new TTestWindow(NULL, "Motion Application");
}

int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmd, int nCmdShow)

{
 TMotionApp MotionApp("Motion Application", hInstance, hPrevInstance,

lpCmd, nCmdShow);
 MotionApp.Run();
 return(MotionApp.Status);
}

Explanation

As in the first example, the first operation is to initialize the system.
Instead of performing motion with "MoveBy" and "MoveTo" the
command "BeginMoveBy" is used. Commands that start with "Be-
gin" imply that they do not wait for their operation to be complete.
The move is started and program execution immediately continues.
The program then performs other operations (in this case simply
incrementing a variable) and periodically checks to see if the motion
is completed by interrogating the servo system to find out when
motion is complete.

Although a small improvement over the first example in terms of
allowing other operations to continue during the motion program,

242

User Manual for Motion Server and Servo Application Workbench

this is not a very complete solution either. Although other activities
can occur during motion Windows is still "locked out" (i.e. try to
move the window by dragging on the title bar during operation of
the motion). The next example illustrates how to have an indepen-
dent motion program operating at the same time as Windows inter-
action.

243

9Using the Servolib Dynamic Link Library

C++ Example 3 - Combined Access

Description

This example uses a seperate Douloi Pascal program to operate the
XAxis while Windows continues operation in an independent man-
ner.

Douloi Pascal Source Code

{Douloi Pascal Program for DLL Example 3}
{filename: ManyMove.dps}

procedure PerformManyMoves;
begin
XAxis.MoveTo(10000);
XAxis.MoveTo(0);
XAxis.MoveTo(20000);
XAxis.MoveTo(0);
XAxis.MoveTo(30000);
XAxis.Moveto(0);
XAxis.MoveTo(40000);
XAxis.MoveTo(0);
end;

Source Code

// Borland Turbo C++ Example 3
// The following example is based on a borland
// Object Windows Library demo program and must
// be compiler with OWL

#include <owl.h>
#include "tcwdll_3.h"
#include "servolib.h" // header file for ServlLib DLL

int ErrorCode;
int Line;
int Row;

class TMotionApp : public TApplication {
public:
 TMotionApp(LPSTR Name, HINSTANCE hInstance,

 HINSTANCE hPrevInstance, LPSTR lpCmd,
 int nCmdShow)

 : TApplication(Name, hInstance,
 hPrevInstance, lpCmd, nCmdShow) {};

244

User Manual for Motion Server and Servo Application Workbench

 virtual void InitMainWindow();
};

class TTestWindow : public TWindow {
public:
 TTestWindow(PTWindowsObject AParent, LPSTR ATitle);
 virtual void CMStart(TMessage& Msg) = [CM_FIRST + CM_START];
};

TTestWindow::TTestWindow(PTWindowsObject AParent, LPSTR ATitle)
 : TWindow(AParent, ATitle)
{
 AssignMenu("COMMANDS");
}

void TTestWindow::CMStart(TMessage&)
{

InitializeServoSystem(800,808,&ErrorCode);
InitializeCompiler();
Compile("..\\manymove.dps",NULL,&Line,&Row,&ErrorCode,NULL);
if (ErrorCode != 0)

{
MessageBox(HWindow,"Compiler Problem","Error",MB_OK);
return;
}

EngageHighSpeedClock(&ErrorCode);
SetServo(XAxis(),1,&ErrorCode);
BeginTask(TaskAddr(("PerformManyMoves"),&ErrorCode);

if (ErrorCode != 0)
{
MessageBox(HWindow,"Motion Problem","Error",MB_OK);
ErrorCode=0;
}

MessageBox(HWindow,"Task Started, Application and Windows free to do other
things","Status",MB_OK);

}

void TMotionApp::InitMainWindow()
{
 MainWindow = new TTestWindow(NULL, "Motion Application");
}

int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmd, int nCmdShow)

{
TMotionApp MotionApp("Motion Application", hInstance, hPrevInstance,

lpCmd, nCmdShow);
MotionApp.Run();
DisengageHighSpeedClock(); /* shutdown system before leaving */
return(MotionApp.Status);

}

245

9Using the Servolib Dynamic Link Library

Explanation

Examples 1 and 2 could have been done with a conventional PC
based motion control card. This example is the point where Motion
Server's architecture begins to make a contribution. The motion task
is specified in the file ManyMove.dps (dps stands for Douloi Pascal
Source). Note that the program is written in Douloi Pascal and not
in the language of your DLL invoking host environment (i.e. not in
TPW or C++ or VB).

This program is then compiled by your program at run-time through
the Compile command implemented in the ServoLib DLL. The
different parameters given to the Compile command help focus in
on where errors are located in the event there is a mistake in the
Douloi Pascal program. Note that InitializeCompiler needs to called
before you use the Compile command, however it only needs to be
called once at the beginning of the application regardless of the
number of times Compile is used. Most of InitializeCompiler's
activity is including the "system constants" that are described in the
file STANDARD.INC. If you do not use these constants you can
reduce the time delay of InitializeCompiler by deleting the symbols
you do not need.

The host program then begins the Douloi Pascal program with the
command BeginTaskAtCName (as distinct from a pascal style
name). Strings in ServoLib are passed as null terminated, "ASCIIZ"
strings, or "C style" strings. The motion program is now operating,
running the motor, while the host Windows application is free to do
whatever it would like. The motion system is quite independent of
any particular Windows application once it has been started and does
not require the application to remain present to operate. This degree
of independence requires some thoughtful consideration since you
would not want to start an operation and then lose the means of
stopping it. Also note that an operating motion program will con-
tinue to operate even if the Windows application that started it
experiences a UAE. For these reasons it is a good idea to hook up a
hardware switch to one of the several User Disable inputs so as to be
able to shutdown the motion system in the event that your Windows
application does not perform as expected.

246

User Manual for Motion Server and Servo Application Workbench

The procedure DisengageHighSpeedClock is called when the appli-
cation finishes operating. This call should be made before you leave
the application and definitely before you attempt to leave Windows
or invoke a DOS shell. If you must go to DOS during the operation
of the application use the Servo Ignition utility to manually turn off
the high speed clock while you spend time in DOS.

247

9Using the Servolib Dynamic Link Library

Visual Basic DLL Examples

To make use of the ServoLib DLL from Visual Basic you will need to
include the libraries declarations in the Global File of the application. The
simplest way to do this might be to use Notepad to view the vb_inter.glo
file provided in the \SERVO installation directory. Edit\Copy the entire file
onto the Windows clipboard and paste it into the global file for your visual
basic application.

The following examples illustrate how calls can be made to the motion
system as well as the compiler.

Visual Basic Example 1 - Direct Access

Description

This example uses direct calls to move the XAxis motor to several
different locations and to write out commanded position informa-
tion. This would represent the simplest use of ServlLib.

Source Code

The following was written in the click procedure of a single button
on the default form.

248

User Manual for Motion Server and Servo Application Workbench

Explanation

After initializing the servo system the XAxis is directed to move to
different destinations. It is extremely important that the dimension of
the procedure match the dimension of the function, ie
T1AxisMoveTo should only be used with a T1Axis parameter.

Note that, while motion is ocurring, Windows interaction comes to a
halt. By using the MoveTo and MoveBy routines the program waits
for the moves to finish. Although simple to synchronize, this ap-
proach is very limiting for an interactive application. The following
examples show ways to not have this limitation.

The Servolib DLL provides the procedure Stop(..), used to tell a
T1Axis or TNAxis group to stop moving Visual Basic uses STOP as a
keyword. To prevent a problem, the visual basic global file, used to
import the library Stop(...) procedure, aliases the name to
StopMotion to make it distinct from the STOP reserved word.

249

9Using the Servolib Dynamic Link Library

Visual Basic Example 2 - Direct Access

Description

This example illustrates how to continue with program execution
during a motion.

Source Code

The following was written in the click procedure of a single button
on the default form.

Explanation

As in the first example, the first operation is to initialize the system.
Instead of performing motion with "MoveBy" and "MoveTo" the
command "BeginMoveBy" is used. Commands that start with "Be-
gin" imply that they do not wait for their operation to be complete.
The move is started and program execution immediately continues.
The program then performs other operations (in this case simply
incrementing a variable) and periodically checks to see if the motion
is completed by interrogating the servo system to find out when
motion is complete.

Although a small improvement over the first example in terms of
allowing other operations to continue during the motion program,
this is not a very complete solution either. Although other activities

250

User Manual for Motion Server and Servo Application Workbench

can occur during motion Windows is still "locked out" (i.e. try to
move the window by dragging on the title bar during operation of
the motion). The next example illustrates how to have an indepen-
dent motion program operating at the same time as Windows inter-
action.

251

9Using the Servolib Dynamic Link Library

Visual Basic Example 3 - Combined Access

Description

This example uses a seperate Douloi Pascal program to operate the
XAxis while Windows continues operation in an independent man-
ner.

Douloi Pascal Source Code

{Douloi Pascal Program for DLL Example 3}
{filename: ManyMove.dps}

procedure PerformManyMoves;
begin
XAxis.MoveTo(10000);
XAxis.MoveTo(0);
XAxis.MoveTo(20000);
XAxis.MoveTo(0);
XAxis.MoveTo(30000);
XAxis.Moveto(0);
XAxis.MoveTo(40000);
XAxis.MoveTo(0);
end;

Source Code

The following code is in the click procedure of a button placed onto
the default form.

Sub Command1_Click ()
InitializeServoSystem 800, 0, GlobalErrorCode
InitializeCompiler
Compile "..\ManyMove.dps", GlobalBookMark, GlobalRow, GlobalColumn,
 GlobalErrorCode, GlobalErrorString
EngageHighSpeedClock (GlobalErrorCode)
SetServo XAxis(), 1, GlobalErrorCode
BeginTask TaskAddr("PerformManyMoves"), GlobalErrorCode
If GlobalErrorCode <> 0 Then
 MsgBox "Motion Problem"
End If
MsgBox "Application and Windows free to do other things"
End Sub

252

User Manual for Motion Server and Servo Application Workbench

Explanation

Examples 1 and 2 could have been done with a conventional PC
based motion control card. This example is the point where Motion
Server's architecture begins to make a contribution. The motion task
is specified in the file ManyMove.dps (dps stands for Douloi Pascal
Source). Note that the program is written in Douloi Pascal and not
in the language of your DLL invoking host environment (i.e. not in
TPW or C++ or VB).

This program is then compiled by your program at run-time through
the Compile command implemented in the ServoLib DLL. The
different parameters given to the Compile command help focus in
on where errors are located in the event there is a mistake in the
Douloi Pascal program. Note that InitializeCompiler needs to called
before you use the Compile command, however it only needs to be
called once at the beginning of the application regardless of the
number of times Compile is used. Most of InitializeCompiler's
activity is including the "system constants" that are described in the
file STANDARD.INC. If you do not use these constants you can
reduce the time delay of InitializeCompiler by deleting the symbols
you do not need.

The host program then begins the Douloi Pascal program with the
command BeginTaskAtCName (as distinct from a pascal style
name). Strings in ServoLib are passed as null terminated, "ASCIIZ"
strings, or "C style" strings. The motion program is now operating,
running the motor, while the host Windows application is free to do
whatever it would like, including terminating! The motion system is
quite independent of any particular Windows application once it has
been started and does not required the application to remain present
to operate. This degree of independence requires some thoughtful
consideration since you would not want to start an operation and
then lose the means of stopping it. Also note that an operating mo-
tion program will continue to operate even if the Windows applica-
tion that started it experiences a UAE. For these reasons it is a good
idea to hook up a hardware switch to one of the several User Disable
inputs so as to be able to shutdown the motion system in the event
that your Windows application does not perform as expected.

Note that the program turns on the high speed clock, but does not
turn it off. You must turn off the high speed clock yourself with the
ServoIgnition utility, or more likely, in the close procedure of your
Window applications Main Window by calling the routine
DisengageHighSpeedClock. Make sure the "ignition is turned off"
before leaving Windows or invoking a DOS shell.

253

9Using the Servolib Dynamic Link Library

SAW Implementation of DLL
Examples

The examples motions that have been illustrated through DLL access from
conventional languages systems are also presented in Servo Application
Workbench. SAW is not accessible from another language system but
rather is its own language system, more similar to Visual Basic than any of
the other languages illustrated in this example set. This is included in the
section on DLLs to provide a basis for comparison.

SAW Implementation of Example 1

Description

This example moves the XAxis motor to several different locations
and to write out commanded position information.

Source Code

The following was written in the click procedure of a single button
on the default plate.

254

User Manual for Motion Server and Servo Application Workbench

Explanation

Initialization is handled for you when SAW first starts. It is not
necessary to worry about the dimension of the method when used in
the object format of Douloi Pascal as compared to the DLLs. If the
wrong number of parameters is provided a compiler error will
inform you of that. All TNAxis machines use the same procedure
names, ie TNAxis machines of dimension 1 through 6 all know how
to MoveTo a set of coordiantes. Each procedure is matched to its
respectively dimensioned machine so as to collect the correct num-
ber of parameters. Explicit error checking is not required since a
problem will genereate an escape and notify the operator directly.
You have the ability to trap escapes to alter the error behavior.

Note that, while motion is ocurring, Windows interaction comes to a
halt just like the DLLs. There many situations where it is important
to not continue until a procedure is finished. Buttons do not allow
Windows activity to occur until their procedures are finished. This is
not restrictive, however, since buttons can have as their behaviors the
scheduling of tasks.

255

9Using the Servolib Dynamic Link Library

SAW Implementation of Example 2

Description

This example illustrates how to continue with program execution
during a motion from within a single task.

Source Code

The following was written in the click procedure of a single button
on the default form.

Explanation

This uses BeginMoveBy to start the motion and then performs other
activities checking to see if the motion is complete.

Although a small improvement over the first example in terms of
allowing other operations to continue during the motion program,
this is not a very complete solution either. Although other activities
can occur during motion Windows is still "locked out" (i.e. try to
move the window by dragging on the title bar during operation of
the motion). The next example illustrates how to have an indepen-
dent motion program operating at the same time as Windows inter-
action.

256

User Manual for Motion Server and Servo Application Workbench

Saw Implementation of Example 3

Description

This example operates the XAxis while Windows continues opera-
tion in an independent manner.

Source Code

The follwoing code is in the click procedure of a button placed on
the default plate.

The procedure PerformManyMoves is created as a plate procedure
and has the same form as the Douloi Pascal ManyMove.dps file.

257

9Using the Servolib Dynamic Link Library

Explanation

By putting the XAxis activity in a seperate procedure
{PerformManyMoves} and starting that procedure as a seperate task
{BeginTask(Addr(PerformManyMoves)}the button is able to com-
plete its job very quickly and allow execution to return to Windows.
The operation of PerformManyMoves then proceeds on its own to
completion.

258

User Manual for Motion Server and Servo Application Workbench

259

10
Pas-
cal
Lan-
guage
Sys-
tem

Chapter

10) System Design Issues

Safety

Purpose

Motion control applications, among the broad range of application of
computer technology, present some of the most physical consequences to
software quality to be found. It is entirely possible to ask a machine to
perform an action which may not be safe to perform. Safety, primarily of
the operators and people near equipment, and secondarily of the equipment
itself, should be part of any motion control application design from the
beginning. This section describes different design issues you may want to
consider to enhance the safety of your application.

Limitations of Application

Douloi Automation does not authorize the use of Motion Server and/or
SAW for any application which involves human life support activity where
the failure of the motion system could endanger the lives of people.

Responsibility

You are ultimately responsible for the safety consequences of a machine
controlled through Motion Server and SAW. There is no way for Douloi
Automation to inspect and assume responsibility for the day-to-day opera-
tion of a machine being controlled by Motion Server and/or SAW. What
constitutes safe behavior is application dependent. The decision of what
constitutes an error situation and the appropriate responses to that error
situation are in the problem and knowledge domain of the user of the
motion system, and are appropriately your responsibility. Douloi Automa-
tion is available to help advise and direct you in the creation of safety
responses by the motion control system however Douloi Automation
assumes no responsibility.

260

User Manual for Motion Server and Servo Application Workbench

Built-In Safety Features

Motion Server provides several features to assist in creating a safe system.
The primary feature with respect to system integrity is the dual Watchdog
Safety System. This is a hardware system in the Motion Server hardware
which continually confirms that the hardware is receiving its due attention
from the on-board processor. If for any reason the processor does not
participate in the motion control relationship which Motion Server hard-
ware expects, the watchdog hardware disables the amplifiers and shuts off
the servos. Examples of failures that this system would protect against
include software failures in Motion Server or SAW.

Motion Server provides a safety feature which is useful during motion.
Axis which are servoing are expected to have their ActualPosition close to
the CommandedPosition. If there is a large difference between the two
there most likely is some problem. This difference, the ErrorPosition, is
monitored by Motion Server. If an axis is supposed to be servoing, and the
ErrorPosition is greater than the ErrorLimit of an axis then the axis is
disabled. Note that the check really only occurs during motion. Although
the check is performed while an axis is stationary there is no way for
Motion Server to distinguish between a motor correctly holding position
and a failed encoder. Both report 0 position change.

Motion Server hardware provides amplifier enable lines, one for each axis
in the system. These digital signals are connected to the enable input of an
amplifier to indicate to the amplifier when it should regard the analog
input. If the amplifier enable is "high" the amplifier provides power as
directed by the analog input. If the level is "low" the amplifier provides no
power regardless of the analog input. These affords two different ways for
the control system to request 0 amplifier output, through a 0 analog voltage
and as well through a digital signal. Typically the amplifier enable signal is
"pulled up" internally to allow the amplifier to be enabled as the default
condition making the use of the amplifier enable line optional. However, if
the amplifier provides for an amp enable signal you are advised to use it to
enhance the safety of the system.

261

10
Pas-
cal
Lan-
guage
Sys-
tem

Chapter

Limit Switches

Limit Switches are often provided on equipment to represent "end of
mechanical travel". Limit switches typically are used to shut down a system
since in normal operation you should never tell the machine to go to its
very limit. Sometimes limit switches are used for initialization to establish
the mechanical coordinate system.

Motion Server does not provide built-in support for limit switches since
Douloi Automation regards limit switch behavior to be application depen-
dent. However there is a library of limit switch behaviors available which
can possibly be used directly or more likely modified to suit your particular
needs. These limit switch behaviors are available through the LIMITS
catalog. The behaviors "merge" to your application's main plate and auto-
matically start operation through the SETUP procedure which is part of
the limit switch behavior. You can browse through the LIMITS catalog to
determine if there is a limit switch behavior suitable for your application.

Emergency Stop Considerations

If you provide a way to start a machine you should provide at least one way
to stop it. You will need to determine what type of stop is appropriate.
Although it may only seem necessary to provide a "stop at end of cycle" it is
generally advisable to provide some means to stop the machine much
sooner in the event of machine motion endangering someone.

You can include an abort button in a SAW application. Although this is a
good thing to do don't expect someone to perform precision mouse clicks
during a crisis. A better solution is a hardware button. The large, red,
round, latching "mushroom" buttons are very suitable. Their purpose is
almost universally understood to mean "emergency stop" even without a
descriptive legend. You can swing at such a button and successfully hit it
much quicker than finding the mouse and clicking a Windows control.

This button should be connected to the EStop input. This can be accessed
with a 6 pin plug or by placing the jumper on pins 1 and 2, the pins closest
to the Motion Server mounting bracket. In this latter case, input bit 1 on
the general purpose IO cable becomes the EStop input. The EStop input is
used to make a normally closed continuous loop to ground. If any EStop
button in the loop is opened, the Motion Server hardware shuts down
power to the drive regardless of what the software is requesting.

The watchdog system always turns the servos off. The interpretation of a
watchdog event is that controller integrity has been lost. Without the
controller operating correctly the servos are basically not being controlled
at all and any expressed request for power is potentially dangerous.

262

User Manual for Motion Server and Servo Application Workbench

An emergency stop, on the other hand, represents not a loss of system
integrity but some insight from an operator that the machine needs to stop.
Accordingly it is possible to consider an emergency shutdown plan that
gracefully decelerates the motors etc. to perform a stop. The more conser-
vative choice is to leave the User Disable jumper in place and simply turn
the motors off. However coasting motors or motors dropping from a
gravity load may pose a greater safety hazard than leaving the motors active.

Note that regardless of whether the User Disable jumper is in place or not,
you must have a routine which notices the level of this line and takes
action, i.e. telling the machine to abort or stop. If you remove the User
Disable jumper, the input has no effect at all on the hardware. By removing
the jumper you are taking full responsibility to determine what should
happen during an emergency stop and scheduling a task to notice that the
line has asserted so as to start that task.

All three user disable inputs are "or-ed" together, that is to say that closing
any switch to ground will result in the same effect. You may also use any of
the remaining 24 input lines as "emergency stop" signals by including them
in the routine which is scheduled to check for system integrity.

Safety is important. If you have any questions about how to design safety
into your system please contact Douloi Automation for recommendations.
This type of support comes with the purchase price of a controller so please
do not hesitate to call.

263

10System Design Issues

Initialization

Purpose

Most motion control systems are "incremental" motion control systems.
These systems can precisely change positions but do not have any funda-
mental "hardware" knowledge of where they actually are. They only know
their change in position from some initial starting condition. The purpose
of this section is to help direct you through design choices that will allow
your machine to repeatably know where it is after start-up so as to insure
consistent operation of your motion application.

Traditional Homing Strategy

"Homing" is used to describe a process which a machine goes through so as
to precisely know its position. Typically this process is done once, when the
machine is first turned on. Once the control system knows where the
machine is position information should be reliably retained automatically.

The homing process typically uses homing sensors. These sensors "trip" at
some particular point in the workspace, often near the limits of motion.
The machine is commanded, in its uninitialized state, to move in a particu-
lar direction known to be towards the home sensor. When the sensor trips
the machine has gained some reference information about where it physi-
cally is. Because home sensors are usually not very precise the home
sensors are used in conjunction with the index pulse on a 3 channel en-
coder to provide high performance initialization. Effectively, the home
sensor is able to get the machine to within a motor rev of the home posi-
tion, and the index pulse is used to identify what particular count within
that motor rev. The combination of these two provides repeatability, to
within a count, of machine operation from one power-on cycle to the next.

The process usually is performed by initially moving at a moderate speed
for the "corner" where the home sensors are, and stopping upon finding the
home sensors. The machine then travels in the reverse direction at a very
slow rate waiting for the home sensors to "untrip". At that point the ma-
chine then performs a relative move by a small amount, determined during
the machine's initial construction, so as to optimize the location of the
index marker on the encoder. The machine then moves at a slow speed and
waits for the index pulses to occur. At this point the position of the ma-
chine is accurately known.

264

User Manual for Motion Server and Servo Application Workbench

The additional move between the "untrip" of the home switch and the
search for the index pulse is provided to maximize the likelihood of finding
the correct motor rev. The home switch basically gets the machine to
within a motor rev and the index pulse to within a count. However it
would be possible in certain situations to select the wrong motor rev.
Imagine that after the home switch has "untripped" that the index pulse is
currently active, i.e. you happen to be right on the index pulse. If you had
untripped a small amount sooner, you would immediately come upon the
index pulse as you advanced from this point. If, however, the home switch
had untripped a moment later you would have already missed the index
pulse and wouldn't find it again for an entire rev. This ambiguity of an
entire motor rev is a large uncertainty. To avoid this uncertainty the
machine should start the search for the index pulse one-half motor rev
back from where it actually is. Then the home switch has an entire plus or
minus half rev of tolerance to miss with and still pick the right motor rev.
The delta move, then, is chosen when the machine is first assembled so as
to be in the neighborhood of half a rev away. The alternative is to mechani-
cally set the location of the index pulse to be half a motor rev away from the
home position however such mechanical adjustment is usually inconve-
nient when changing a number in the program accomplishes the same
result. You can setup an offset file that is read during initialization to
contain the machine-specific calibration numbers so that the software
running a series of machines can all be identical.

Using high speed position capture it is possible for the initialization
process to occur at a higher speed since the capture can be used for both
the home input and index pulse allowing the initialization process to
significantly speed up. However, since initialization is normally performed
just once during the day it usually is not very important for initialization to
be fast.

Motion Server does not have any built-in home behaviors however you
may choose a home behavior from the HOME catalog which includes the
above procedure as well as some others. Please contact Douloi Automation
for guidance on initialization if you have further questions.

265

11Chapter

11) Command Summary

Purpose
The following is a list of all of the commands available. Additional details about the commands can be
found in the on-line help.

Primitive Data Types
Integer .. 16 bit numeric data type
Longint ... 32 bit numeric data type
Single .. 32 bit floating point number
Double .. 64 bit floating point number
String .. 31 character variable for holding letters
Boolean ... true/false type
TMathCoprocessorBuffer Temporary storage area type for math coprocessor state

TNVector Objects - Multidimensional Vectors with N ranging from 2 to 6
Init .. Set the components of the vector to the indicated values
Length .. Return the magnitude of the vector
XComp ... Returns x component of vector (DLL only)
YComp ... Returns y component of vector (DLL only)
ZComp ... Returns z component of vector (DLL only)
UComp .. Returns u component of vector (DLL only)
VComp ... Returns v component of vector (DLL only)
WComp .. Returns w component of vector (DLL only)

Math Coprocessor Operations (Douloi Pascal only)
FInit .. Initialize math coprocessor
FAdd ... Add top two numbers
FSin .. Replace the top number with its sin
FSinCos .. Replaces the top number with its sine and cosine
FSqrt ... Replace the top number with its square root
FLdPi .. Push Pi onto the coprocessor stack
FDiv .. Replace the top two numbers by top-1 divided by the top
FMul ... Replace the top two numbers with their product
FChs ... Change the sign of the top most number
FPaTan ... Replace the top two numbers with the arctan of top-1 / top
FSave .. Stores the coprocessor state into a MathCoprocessorBuffer
FRestore ... Replaces a previously filled MathCoprocessorBuffer
PopLongint Transfer the top number into the specified longint variable
PopSingle ... Transfer the top number into the specified single variable

266

User Manual for Motion Server and Servo Application Workbench

PopDouble Transfer the top number into the specified double variable
PushLongint Transfer the specified longint onto the coprocessor stack
PushSingle Transfer the specified single onto the coprocessor stack
PushDouble Transfer the specified double onto the coprocessor stack

Multitasking
BeginTask ... Spawn a new real-time execution thread
ScheduleTask Periodically spawn a new real-time execution thread
AbortTask ... Stop the execution of a task currently running
SuspendTask Temporarily prevent a task from running
ResumeTask Allow a suspended task to continue executing
ExecuteTask Perform task and wait for completion before continuing (DLL
only)
SetIgnition .. Turns on and off high speed multitasking
Yield .. Give other tasks a chance to run (Douloi Pascal only)
Delay ... Suspends task for specified number of samples
TaskOveranSample Returns true if a task took too much time. (Douloi Pascal only)
CheckTask Causes an escape if a task took too much time (Douloi Pascal only)
TimeRemaining Amount of time remaining in sample period (Douloi Pascal only)
ExecuteWindowsApplication Launch a Windows application (SAW only)
TaskAddr .. Provides address of task procedure for use by other calls

IO Operations
Motion Server IO
SetOutputEnable Tell Motion Server compare output bits to become active
SetOutputBit Change state of output bit on Motion Server hardware
InputBit .. Returns the true/false value of an input signal

General Expansion Bus IO - Douloi Pascal Only
PortWriteByte Write to third party IO space card in 8 bit manner
PortWriteWord Write to third party IO space card in 16 bit manner
PortReadByte Read from third party IO space card in 8 bit manner
PortReadWord Read from third party IO space card in 16 bit manner
MemWriteByte Write to third party memory space card in 8 bit manner
MemWriteWord Write to third party memory space card in 16 bit manner
MemReadByte Read from memory space card in 8 bit manner
MemReadWord Read from memory space card in 16 bit manner

Safety
ResetWatchdog Allow tripped safety system to resume servo activity
WatchdogHasTripped Returns status of watchdog system
UserHasDisabled Indicates if any disable input is asserted

267

11Chapter

Numeric
Sin ... Returns sin of parameter in degrees (SAW only, not real time)
Cos .. Returns cos of parameter in degrees (SAW only, not real time)
ArcTan .. Returns arctan of parameter as degrees (SAW only, not real time)
Sqrt ... Returns square root of parameter
HighInteger Retreives the upper 16 bits of a 32 bit longint {Douloi Pascal only}
LowInteger Retreives the lower most 16 bits of a 32 bit longint {Douloi Pascal
only}

Exception Handling
Escape ... Generates an exception to {Douloi Pascal only}
WriteVerboseEscapeCode Displays text explanation of escape code (SAW only)
EscapeCode Returns current escape value {Douloi Pascal only}

TPlate Objects - Assembly Foundations/Drawing Surfaces (SAW only)
Close ... Causes plate created with POPUP to go away
Popup ... Causes plate to be created, i.e. a dialog box
Update .. Causes drawing activities to be updated and take effect
Clear ... Erases all graphics on plate
ClearLast .. Removes last graphic added to plate
DrawLine ... Draws line between two specified points
DrawRectangle Draws a rectangle specified by two corner points
DrawDiamond Draws diamond inscribed in specified rectangle
DrawEllipse Draws ellipse inscribed in specified rectangle
DrawRoundedRectangle Draws rectangle with rounded corners
SetCoordinateFrame Establishes coordinate frame for drawing
SetLineStyle Sets the outline style of the next graphic created
SetLineColor Sets the outline color for the next graphic created
SetBodyColor Sets the fill or "body" color of the next graphic
Fit .. Sets coordinates to fit around data in array
Plot .. Draws data in array
Enclose ... Stretches coordinate frame to include array
GetOpenFilename Provides filename dialog to get a filename for opening
GetSaveFilename Provides filename dialog to get a filename for saving

TStatic Object - Static Text/Display Object (SAW only)
Read .. Read information from display
Readln ... Read information from display
Write ... Write information to display
Writeln .. Write information to display
Clear ... Erases text
SetDecimalPlace Specifies output format for single numbers

268

User Manual for Motion Server and Servo Application Workbench

TEditor Object - Single Line Text Editor (SAW only)
Read .. Read information from editor
Readln ... Read information from editor
Write ... Write information into editor
Writeln .. Write information into editor
Clear ... Erases text
SetDecimalPlace Specifies output format for single numbers

TListBox Object - List Box Text Selection Object (SAW only)
Read .. Read information from list box
Readln ... Read information from list box
Write ... Add information to list box
Writeln .. Add information to list box
Clear ... Resets list to contain no items
SetDecimalPlace Specifies output format for single numbers
SetSelectionIndex Preset list box selection to indicated index
GetSelectionIndex Returns the index of the current list box selection

TFile Object - DOS File Access Object (SAW only)
Assign ... Associates TFile to DOS filename
Close ... Concludes associated established with Assign
Rewrite ... Prepares file for writing
Reset ... Prepares file for reading
EndOfFile .. Returns true if no more information is in file

THPGLFile Object (SAW only)
Assign ... Associates TFile to DOS filename
Close ... Concludes associated established with Assign
Rewrite ... Prepares file for writing
Reset ... Prepares file for reading
EndOfFile .. Returns true if no more information is in file
ReadCommand Returns HPGL command information

TPrompter Object - Message Box Object (SAW only)
Init .. Creates Windows mechanism for prompting
Write ... Write information into prompter
Writeln .. Write information into prompter and interact with user

TNAxis Object - Multi-Axis Motion Object
Configuration
Init .. Associate object with a system axis
SetMotorType Configures motor for servo or stepper operation
SetEnable .. Allow amplifier to power motor

269

11Chapter

SetMotor .. Turns motor operation on and off
SetLoopInversion Include an additional sign inversion in control law
SetCoordinateInversion Reverse which way is regarded as the positive direction
SetAccel .. Set acceleration rate for trapezoidal moves
SetDecel .. deceleration rate for trapezoidal moves
SetSpeed ... Set speed of slew phase of trapezoidal moves
SetGain ... Set compensation parameter for servo
SetZero ... compensation parameter for servo
SetIntegrator compensation parameter to eliminate steady state position error
SetErrorLimit Set permissible tracking error before disable occurs
SetPositiveLimit Set boundary for movement in the positive direction
SetNegativeLimit Set boundary for movement in the negative direction
SetActualPosition............................. Define current position coordinate
SetCommandedPosition Set commanded position for non-trapezoidal moves
SetCommandedPositionVector Set commanded position for group
ArmInputCapture Prepares axis to latch position based on input signal
ArmIndexCapture............................ Prepares axis to latch position based on index signal
SetCommandedTorque Set output voltage when not servoing

Motion
MoveTo.. Move to absolute coordinate
MoveBy .. Move to relative coordinate
BeginMoveTo Start move to absolute coordinate
BeginMoveBy Start move to relative coordinate
MoveToVector Perform absolute coordianted move to vector parameter
MoveByVector Perform relative coordinated move by vector parameter
BeginMoveToVector Start absolute coordinated move to vector parameter
BeginMoveByVector Start relative coordinated move by vector parameter
MoveAlongCurve Perform coordinated multiaxis motion along curve
BeginMoveAlongCurve Begin coordinated curved motion
AppendMoveTo Add absolute vector segment to curve description
AppendMoveBy Add vector segment to curve description relative to last segment
AppendArc Add circular or helical arc description to continuous path curve
Clear ... Erase any established motion curve info
LinkTo .. Associate TNAxis with vector array of same dimension
Jog ... Move indefintely at constant speed
Stop ... Gently stops any motion that may be in progress
BeginStop ... Begins to stop but immediately does next instruction
Abort ... Suddenly aborts any motion that my be in progress

Query
Gain .. Return current compensator gain value
Zero .. Return current compensator zero value
Integrator .. Return current compensator integrator value
Accel ... Return current acceleration parameter in counts per second
squared
Decel ... Return current deceleration parameter in counts per second
squared
Speed .. Return current speed in counts per second

270

User Manual for Motion Server and Servo Application Workbench

ActualPosition Return current actual motor position
CommandedPosition Return ideal or target position for motor
DestinationPosition Return absolute coordinate of end of move
ErrorPosition Return discrepency between current and ideal position
CapturePosition Return position recorded when latch event occurred
GetActualPositionVector Fill in vector with actual axis coordinates
GetCommandedPositionVector Fill in vector with ideal coordinates
GetErrorPositionVector Fill in vector with discrepencies between actual and ideal locations
MoveIsFinished Return true if move has finished
CommandedTorque........................ Return current analog output value
ProfileVelocity Return current ideal profile velocity
CaptureHasTripped Indicate if latch event has occurred
MotorIsOn Return true if motor is currently powered and active
EnableIsOn Return true if amplifier is powered

Escape Code Constants
DivideBy0EscapeCode
SampleOverrunEscapecode
AxisNotValidEscapecode
SpeedNegativeEscapeCode
NotImplementedEscapeCode
CurveBufferNotLinkedEscapeCode
UserAccelIs0OrNegativeEscapeCode
UserDecelIs0OrNegativeEscapeCode
AxisNotAvailableEscapeCode
UnableToResumeTaskEscapeCode
UnableToBeginTaskEscapeCode
AppendMoveToOverflowEscapeCode
InsufficientNumberOfSegmentsEscapeCode
MotionOverRunEscapeCode
AxisIsBusyEscapeCode
FileResetEscapeCode
FileRewriteEscapeCode
ReadEscapeCode
WriteEscapeCode
ObjectNotInitializedEscapeCode
ConversionErrorEscapeCode
ParameterOutOfRangeEscapeCode
WatchdogFailedToResetEscapeCode
OptionNotPresentEscapeCode

271

11Chapter

Mathematical Constants
pi

Boolean Constants
True
False
On
Off

Torque Descriptions
MaxTorque= 2039;
MinTorque= -2040;

Pen line styles
Solid =0;
Dash =1;
Dot =2;
DashDot =3;
DashDotDot=4;

Pen colors
Black =0;
Red =1;
Green =2;
Blue =3;
Yellow =4;
Magenta=5;
Cyan =6;
White =7;

HPGL Command Constants
HPGLUndefinedCommand=0;
HPGLEndOfFile=1;
HPGLInit=2;
HPGLSC=3;
HPGLSelectPen=4;
HPGLPenUp=5;
HPGLPenDown=6;
HPGLPlotAbsolute=7;

272

User Manual for Motion Server and Servo Application Workbench

273

12
Pas-
cal
Lan-
guage
Sys-
tem

Chapter

12) Cables and Connectors

Description
Cabling to Motion Server is performed through flat ribbon cables
terminated with IDC connectors.

Axis Group Connectors

There are (4) 60 pin connectors for axis information called "Axis
Group" connectors. Each 60 pin ribbon cable supports (4) axis of
signals. The 60 pin ribbon cable can be split apart into (4) identical
15 pin axis sub-cables. The signals have been chosen in a very regular
pattern so that all of the 15 pin sub-cables are identical in layout.

I/O Connector

There is (1) 50 pin connector containing 48 bits of configurable I/O.
Signals are configured as input or output in 4 bit groups.

E-Stop Connector

There is (1) 6 pin header used to configure E-Stop with a jumper or
to cable to EStop. The jumper can be used to disable E-Stop, connect
I/O signal 1 to be E-Stop, or can serve as a cable connector for an
external E-Stop cable assembly.

External Bus Connector

There is (1) 26 pin connector which supports an external 8 bit bus
allowing Motion Server to control additional hardware elements.

274

User Manual for Motion Server and Servo Application Workbench

Axis Signal Descriptions

Encoder A+, A-, B+, B-, I+, I-

Functional Description

Encoder signals provide position feedback from a rotary or linear
encoder. In general these signals are provided in a "quadrature"
format indicating both position and direction change. Encoders are
necessary for servo motors and optional for stepper motors. Differen-
tial signals are desirable demonstrating improved noise immunity,
however single-ended encoders may also be used. When using a
single ended encoders connect the signals to the "+" inputs. The "-"
inputs have a "pull-center" resistors connecting the "-" inputs to the
differential receivers to a 2 volt reference. This provides a default "-"
signal level in the absence of the actual signal. In certain rare cases it
may be necessary to change this default reference value. This can be
done by removing or switching an resistor network which is socketed
on the board. Consult Douloi Automation before attempting any
change.

The "I" signal is the index pulse for an optical encoder. This signal
can be used for higher speed, more repeatable homing, or for en-
coder-drift detection.

Electrical Description

Encoder signals go into a 3486-style differential receiver. The receiv-
ers are rated for a maximum differential mode voltage of +/- 25 volts
and common mode voltage of +/- 15 volts. In most cases the en-
coder signals are 5 volt signals.

275

12
Pas-
cal
Lan-
guage
Sys-
tem

Chapter

Amp Enable High, Amp Enable Low

Functional Description

The amplifier enable signal is a digital output which allows the
motor amplifier to apply power. If the amplifier is not enabled, the
amplifier will not produce motor current regardless of the level of
the motor command voltage. Different amplifiers have different
conventions for what "enable" means. Some apply power if the signal
is a high logic level. Some apply power on a low logic level. To
accommodate these differences both a high and a low level signal are
provided. Review amplifier documentation to learn which level is
required. Douloi Automation recommends setting the amplifier (if
the option is available) to be inactive until a deliberate amp enable
signal is provided by the controller. Providing both a high and low
level signal places the decision of amplifier enable sense into the
machine wiring harness, not an on-controller jumper which could be
misconfigured.

Electrical Description

The amplifier enable signals are driven by a 74LS07 with open
collector outputs.

Position Capture

Functional Description

The Position Capture input can be used for high-speed registration
applications. The position of the encoder is recorded in hardware in
response to a position capture signal. Most often the signal is used as
a homing input. Even without an encoder, the level of the signal can
be monitored in software with the CaptureBit command.

Electrical Description

The Position Capture signal is the "+" side of a 3486 differential
receiver. The "-" side of the receiver goes to a 2 volt reference. Stan-
dard TTL level can be used and voltage up to 24 volts maximum can
be tolerated. There is no on-board pullup resistor for this input. If
the sensor being used is an open-collector style drive, a 4.7k pullup
resistor to +5 volts (available on the axis connector) should be used.

276

User Manual for Motion Server and Servo Application Workbench

Position Compare

Functional Description

Position Compare is an output signal that is set when the encoder
hardware detects a specific encoder position. The output can also be
used as a general purpose output.

Electrical Description

Position Compare is a TTL level output with a 12 ma sink and
approximately no source capability. This signal is the most "exposed"
signal on the axis connector set coming directly from a FPGA device
on the board with no additional buffering or protection.

Motor Command

Functional Description

The Motor Command signal is a +/- 10 volt signal most often used
to specify requested current from a servo motor amplifier. The signal
can also represent requested voltage or velocity depending on the
amplifier mode selected. In most cases torque mode is most suitable

Electrical Description

The Motor Command signal is +/- 10 volts with 3 ma drive. Many
amplifiers have differential receivers. In this case, use the motor
command signal on the "+" side of the receiver and ground (from
the axis cable set) on the negative side. Providing Motor Command
and ground in a twisted pair can improve noise immunity.

Step Pulse, Direction

Functional Description

Step Pulse and Direction signals are used for controlling stepper
motors. Standard firmware supports narrow (1 microsecond) step
pulses. Alternate firmware for 4-axis controllers is available for
supporting wide step pulses (30 microseconds) if the stepper driver is
unable to respond to narrow pulses.

277

12
Pas-
cal
Lan-
guage
Sys-
tem

Chapter

Electrical Description

Step Pulse and Direction signals are open collector outputs driven by
a 74LS07.

+5 Volts, Ground

Description

+5 Volts and Ground are available for providing encoder power,
sensor power, and pull-up references. These signals come directly
from the PC's power supply.

Pin Numbering Conventions
There are two different connector styles most often used with the
Motion Server Controller. The first is "2-row IDC" style connectors,
which are the style commonly used with computer disk-drive ca-
bling etc. In this convention, the pin number corresponds to the wire
number, counting sequentially from the end of the wire. This pro-
duces a "back and forth" counting pattern on the IDC connector.

The other connector often used is a D subminiature style. This
connector has a pin definition which can often be read on the con-
nector itself. Small, inscribed numbers next to the pins indicate that
the pin numbering is sequential along the length of the connector,
and then resumes at the beginning of the next row. This is quite
different from the "back and forth" convention of the 2 row IDC
connector. It is most convenient to use D connectors by "splitting
apart" the 60 pin IDC cable and then crimping IDC style D connec-
tors. NOTE THAT THE PIN NUMBERING CONVENTION
FOR D-CONNECTORS ATTACHED TO THE RIBBON
CABLE IS DIFFERENT THAN THE IDC 2-ROW CONVEN-
TION FOR THE CABLE ITSELF. Please refer to the proper table
when preparing to wire to the controller.

278

User Manual for Motion Server and Servo Application Workbench

Axis Group Connector Definitions, 2-Row IDC
The following Table defines the connectors for the axis groups. These connectors are designated "Axis 1-4",
"Axis 5-8", "Axis 9-12", and "Axis 13-16" on the printed circuit board silk screen. The signal definitions is a
regular pattern both along the connector, and from one connector to the next. For example, Pin 3 is always
an Encoder B+ signal with the axis defined by which connector the pin is on. Each pin in any particular
connector has 3 other counterparts spaced a multiple of 15 away. For example, pin 18 (pin 3 + 15) is also
an Encoder B+ signal as well as pin 33 (pin 3 +30) and pin 48 (pin 3 + 45)

Pin Number Description Axis 1-4 Axis 5-8 Axis 9-12 Axis 13-16

1 Encoder A+ Axis 1 Axis 5 Axis 9 Axis 13
2 Encoder A- Axis 1 Axis 5 Axis 9 Axis 13
3 Encoder B+ Axis 1 Axis 5 Axis 9 Axis 13
4 Encoder B- Axis 1 Axis 5 Axis 9 Axis 13
5 Encoder I+ Axis 1 Axis 5 Axis 9 Axis 13
6 Encoder I- Axis 1 Axis 5 Axis 9 Axis 13
7 Amp Enable High Axis 1 Axis 5 Axis 9 Axis 13
8 Amp Enable Low Axis 1 Axis 5 Axis 9 Axis 13
9 Position Capture Axis 1 Axis 5 Axis 9 Axis 13

10 Position Compare Axis 1 Axis 5 Axis 9 Axis 13
11 Motor Command Axis 1 Axis 5 Axis 9 Axis 13
12 Step Pulse Axis 1 Axis 5 Axis 9 Axis 13
13 Direction Axis 1 Axis 5 Axis 9 Axis 13
14 +5 Volts Axis 1 Axis 5 Axis 9 Axis 13
15 Ground Axis 1 Axis 5 Axis 9 Axis 13

16 Encoder A+ Axis 2 Axis 6 Axis 10 Axis 14
17 Encoder A- Axis 2 Axis 6 Axis 10 Axis 14
18 Encoder B+ Axis 2 Axis 6 Axis 10 Axis 14
19 Encoder B- Axis 2 Axis 6 Axis 10 Axis 14
20 Encoder I+ Axis 2 Axis 6 Axis 10 Axis 14
21 Encoder I- Axis 2 Axis 6 Axis 10 Axis 14
22 Amp Enable High Axis 2 Axis 6 Axis 10 Axis 14
23 Amp Enable Low Axis 2 Axis 6 Axis 10 Axis 14
24 Position Capture Axis 2 Axis 6 Axis 10 Axis 14
25 Position Compare Axis 2 Axis 6 Axis 10 Axis 14
26 Motor Command Axis 2 Axis 6 Axis 10 Axis 14
27 Step Pulse Axis 2 Axis 6 Axis 10 Axis 14
28 Direction Axis 2 Axis 6 Axis 10 Axis 14
29 +5 Volts Axis 2 Axis 6 Axis 10 Axis 14
30 Ground Axis 2 Axis 6 Axis 10 Axis 14

279

12Cables and Connectors

Pin Number Description Axis 1-4 Axis 5-8 Axis 9-12 Axis 13-16

31 Encoder A+ Axis 3 Axis 7 Axis 11 Axis 15
32 Encoder A- Axis 3 Axis 7 Axis 1 Axis 15
33 Encoder B+ Axis 3 Axis 7 Axis 11 Axis 15
34 Encoder B- Axis 3 Axis 7 Axis 11 Axis 15
35 Encoder I+ Axis 3 Axis 7 Axis 11 Axis 15
36 Encoder I- Axis 3 Axis 7 Axis 11 Axis 15
37 Amp Enable High Axis 3 Axis 7 Axis 11 Axis 15
38 Amp Enable Low Axis 3 Axis 7 Axis 11 Axis 15
39 Position Capture Axis 3 Axis 7 Axis 11 Axis 15
40 Position Compare Axis 3 Axis 7 Axis 11 Axis 15
41 Motor Command Axis 3 Axis 7 Axis 11 Axis 15
42 Step Pulse Axis 3 Axis 7 Axis 11 Axis 15
43 Direction Axis 3 Axis 7 Axis 11 Axis 15
44 +5 Volts Axis 3 Axis 7 Axis 11 Axis 15
45 Ground Axis 3 Axis 7 Axis 11 Axis 15

46 Encoder A+ Axis 4 Axis 8 Axis 12 Axis 16
47 Encoder A- Axis 4 Axis 8 Axis 12 Axis 16
48 Encoder B+ Axis 4 Axis 8 Axis 12 Axis 16
49 Encoder B- Axis 4 Axis 8 Axis 12 Axis 16
50 Encoder I+ Axis 4 Axis 8 Axis 12 Axis 16
51 Encoder I- Axis 4 Axis 8 Axis 12 Axis 16
52 Amp Enable High Axis 4 Axis 8 Axis 12 Axis 16
53 Amp Enable Low Axis 4 Axis 8 Axis 12 Axis 16
54 Position Capture Axis 4 Axis 8 Axis 12 Axis 16
55 Position Compare Axis 4 Axis 8 Axis 12 Axis 16
56 Motor Command Axis 4 Axis 8 Axis 12 Axis 16
57 Step Pulse Axis 4 Axis 8 Axis 12 Axis 16
58 Direction Axis 4 Axis 8 Axis 12 Axis 16
59 +5 Volts Axis 4 Axis 8 Axis 12 Axis 16
60 Ground Axis 4 Axis 8 Axis 12 Axis 16

280

User Manual for Motion Server and Servo Application Workbench

Axis Group Connector Definitions, D-Style
If the 60 pin axis cable is split into (4) 15 pin groups, it is possible to attach 15 pin IDC style connectors for
a simple cable assembly. However the D connector pin numbering convention does not correspond to the
wire number sequentially across. When using IDC D connectors please refer to the following table:

D Pin Number Description

1 Encoder A+
2 Encoder B+
3 Encoder I+
4 Amp Enable High
5 Position Capture
6 Motor Command
7 Direction
8 Ground
9 Encoder A-

10 Encoder B-
11 Encoder I-
12 Amp Enable Low
13 Position Compare
14 Step Pulse
15 +5 Volts

281

12Cables and Connectors

I/O Connector Definition
The 50 pin connector provides TTL level inputs and outputs. Outputs sink 12 ma. The pin number is the
I/O number with the exception of 49 (+5) and 50 (ground). Input or output sense is configured in 4 bit
groups. The groups are defined by "splitting" the connector into (2) 1x50 strips, and then slicing those
strips into (12) groups of (4) bits each. This partitioning was chosen so that the even-pin strip could be
configured as inputs allowing a standard OPTO-22 cable to plug into the connector without contention
between the cable grounds (located on all the even pins) and signals normally available on those pins.

Description Pin Pin Description

Group 1 I/O 1 1 2 I/O 2 Group 2
Group 1 I/O 3 3 4 I/O 4 Group 2
Group 1 I/O 5 5 6 I/O 6 Group 2
Group 1 I/O 7 7 8 I/O 8 Group 2

Group 3 I/O 9 9 10 I/O 10 Group 4
Group 3 I/O 11 11 12 I/O 12 Group 4
Group 3 I/O 13 13 14 I/O 14 Group 4
Group 3 I/O 15 15 16 I/O 16 Group 4

Group 5 I/O 17 17 18 I/O 18 Group 6
Group 5 I/O 19 19 20 I/O 20 Group 6
Group 5 I/O 21 21 22 I/O 22 Group 6
Group 5 I/O 23 23 24 I/O 24 Group 6

Group 7 I/O 25 25 26 I/O 26 Group 8
Group 7 I/O 27 27 28 I/O 28 Group 8
Group 7 I/O 29 29 30 I/O 30 Group 8
Group 7 I/O 31 31 32 I/O 32 Group 8

Group 9 I/O 33 33 34 I/O 34 Group 10
Group 9 I/O 35 35 36 I/O 36 Group 10
Group 9 I/O 37 37 38 I/O 38 Group 10
Group 9 I/O 39 39 40 I/O 40 Group 10

Group 11 I/O 41 41 42 I/O 42 Group 12
Group 11 I/O 43 42 44 I/O 44 Group 12
Group 11 I/O 45 45 46 I/O 46 Group 12
Group 11 I/O 47 47 48 I/O 48 Group 12

+5 Volts 49 50 Ground

282

User Manual for Motion Server and Servo Application Workbench

EStop Connector Definition
The EStop connector has 6 pins defined as follows

pin 1 Not Connected (pin 1 is closest to the mounting bracket, rear of PC)
pin 2 Ground
pin 3 E-Stop input
pin 4 I/O 1 from 50 pin connector
pin 5 12 Volt Input for Unlocking Flash Memory
pin 6 12 Volt Source from PC

Placing a jumper between pins 2 and 3 enables the E-Stop (which must be maintained at ground against its
4.7k pullup). This is not recommended if doing anything besides bench testing free spinning motors.

Placing the jumper between pins 3 and 4 redirects the EStop to be from the general I/O connector where
an OPTO-22 module rack may be hooked in, or some other IO interconnect that has been chosen for
general purpose I/O

A third option is to put a 6 x 1 plug into this header with a cable for pins 2 and 3. A normally closed switch
would serve as an E-Stop switch. If the switch disconnected, or the cable was missing, the controller will
not enable power to the amplifiers.

The on-board Flash memory chip is used to store application programs. If the board contains a 28F class
Flash Memory chip, a 12 volt level must be supplied to the chip to "unlock" the chip and permit alteration
of its contents. This level can be provided by turning on switch number 4 on the board itself. In some
applications, accessing switch 4 may be inconvenient. In this case, an external switch can be provided that
connects pin 5 and pin 6 allowing the memory device to be programmed. Alternately, consult with Douloi
Automation regarding a newer 29F class memory chip which does not require the 12 volt level.

283

12Cables and Connectors

External Bus Connector
The remaining 26 pin connector provides a simplified 8-bit bus that can be used to connect to additional
hardware. Note that Douloi provides a PC/104 "bridge" accessory that is driven by this connector. The PC/
104 format allows the use of many third part cards

Power signals from this connector should only be for signal-level power. If you need any significant
current, use a disk-drive connector. Additional details about the use of this bus are available from Douloi
Automation on request.

Pin Description

1 Data 0
2 Data 1
3 Data 2
4 Data 3
5 Data 4
6 Data 5
7 Data 6
8 Data 7
9 Addr 0
10 Addr 1
11 Addr 2
12 Addr 3
13 Addr 4
14 Addr 5
15 Addr 6
16 Select
17 Write/Read
18 Comm_Capture_1
19 Comm_Capture_2
20 Comm_Capture_3
21 Comm_Capture_4
22 Reset
23 +12 Volts
24 -12 Volts
25 +5 Volts
26 Ground

284

User Manual for Motion Server and Servo Application Workbench

285

Index

Symbols
* (Multiplication operator) 136
*.BMP 84
+ (Plus operator) 135
- (Minus operator) 135
/ (real division, i.e. fractional) 136
2 dimensional vector 106
3 channel encoder 263
3 dimensional vector 193
32 bit 386 object code 115
32 bit "short reals" 165
386 INC instruction 135
4 dimensional vector type 119
5 Hz PositionDisplay 173
6 dimensional vectors 131
80 bit real format 165

A
A 26
Abort 34, 37, 41
abort button 261
AbortMotion 116
absolute 34, 35, 40
Accel 216
acceleration 15, 34
actual 28
actual position 35, 39
ActualPosition 39, 260
AddPointToFileButton.Click 197
AdvancePhaseButton.Click 209
AfterVector 214
aggregate structures 123
Aggregate Types 123, 130
aggregate types 137
aggregate variable mechanisms 121
amp enable signal 260
amplifier 25, 26
Amplifier enable 26
amplifier enable inputs 26
amplifier enable lines 260
AnchorVector 218
AND 145
angular accumulation 217
angular displacement 222
annotate 57
ANSI committee for C++ 153
AnswerDisplay 168

Appendix B 118
AppendMoveBy 41
AppendMoveTo 41
application 16
arc tangent function 217
arctan 218
arm 24
array 62
array bound declarations 134
array declarations 161
array information 62
Arrays 126
arrays 59, 121
ASCII 34
ASCII information 191
ASCII interface 191
"ASCIIZ" strings 235
assembly level INC 135
Assignment 129
assignment operator 129, 133
assignment statements 131
Attached 90
Attached Subplates 89
AUTOEXEC 13
axis 24
axis group 33
axis group types 125
axis groups 125

B
B 26
backup 23
backwards 26
"BasePosition" 194
BeforeVector 214
Begin 36
BeginDrag 64, 79, 105, 111
"BeginMoveBy" 241
BeginMoveBy 34, 36, 39, 40
BeginMoveByVector 40
BeginMoveTo 34, 36, 40
BeginMoveToVector 40
BeginStop 36, 37
BeginTask 174, 176
BeginTaskAtCName 245
bi-directional behavior 203
Bi-directional force 221
Bi-directional Force Reflection 221
"Bi-directional Force Reflection" mode 203
"binary search" technique 214
BIOS routines 171, 172
bitmaps 83
"blocks" 179
boolean constant 186
boolean plate variable 175

286

Boolean variables 121
booleans 144
border 60
Borland's Turbo Pascal for Windows 116
boundary position 175
BufferSize 104
built-in home behaviors 264
Bump Graphics 67
bump handles 67
Bump Tool 67
Bumps 67
bumps 103
button 49
Button Tool 52
"Button Up" 81
button-specific 78
Button5 114
Buttons 49, 254
buttons 17, 43
By 35

C
"C style" strings 235
C++ 32, 116
cable 27
�CalcTest� 71
"Calculator" 71
Calculator Project 71
Call-By-Reference 143
call-by-reference 114, 141
Call-By-Value 143
call-by-value 114, 141
"called-by-reference". 114
caller "profiling" 208
calling routine 142, 143
cam geometry 212
cam rotation 213
CamArray 214
CamOutputPosition 211, 213, 214
CamScaleFactor 215
caption 60
Cartesian 40
Case statements 148
Catalogs 92
chamfered edges 70
channel 24
Channels 24
channels 26
Check Encoder 24
CHECKAMP.EXE 26
CheckTask 171, 174
Clear 33, 106, 113
Click 47, 50
click procedure 51, 57
�click� procedures 170

clicking 43
clip art 17
Close 47, 50, 53, 54, 55, 56
closed polygons 87
Code 117
Collect 104
collection size 103
Combined Access 243
commanded 28, 34
commanded position 174, 208
commanded setpoint 170
CommandedPosition 34, 35, 40, 260
commands 32
comparison operators 145
�compartment� labels 161
�compartments� 123
compensation 28, 29, 35
Compile 245
compile time evaluation 136
compile-time error detection 116
compiler 17
complement 24
�component� compartments 124
component storage areas 124
compound conditional expressions 145
compound statement 146
Conditional expressions 145
conditional jumps and iteration 184
conditional termination 150
confused stack 157
const CamArrayLength 212
const ShadowOffset=3; 111
Constant 76
constant declaration 134
Constant Editor 76, 133
constants 61, 133
constructor 131, 199
continuous 41
control key 56
control law 29
control law calculations 185
Control Structure Principles 145
Control Structures 145
Control-Drag 73
control-dragging 86
controller 29
controller sample rate 127
�conventional math� 135
Conventional Tasks 170
Cooperative Multitasking 171
coordinated 33
coordinated motion 15
copy 56
�copy� activity 133
cropping 83
�cross product� 137
Current Control 25

287

current position 39
CurrentMotorTorque 121
CurrentPosition:=LastPosition; 130
CurrentVector 220
cursor 48
cursor shape 48
curve 41
curved 41
custom axis coordination 169

D
Data 117
data structures 59, 117, 121
DataBufferIndex 121
Decel 216
deceleration 15, 34, 37
decrementing loop variable 149
default 46
default application 53
default choice "Variable" 62
default parameter passing model 143
default plate 61
default recover block 155
default Window 53
default window 60
Delay 174
DeltaVector 112, 214, 218
demo programs 118
descriptive cam geometry 212
�desk organizers� 123
destination 15
destructor 199
destructors 131
differential 24
direct DLL calls 225
disable 25
DisengageHighSpeedClock 246
disk 19, 23
displacement 33
displacement value 213
�Display� 72
display 57
display coordinates 80
DisplayValue 73
DistanceToGo 122
div (integer division) 136
DLL 225
DLL connectivity 122
DLLs 13
do it 32, 35
DOS batch file 199
DOS files 195
DOS rentrance limitation 195
�dot� 137
dot product multiplication 194

Double click 26, 27, 45, 50, 54, 55
double click 52
double clicking 52
Double Precision IEEE Floating Point Reals 122
Douloi Pascal 16, 115
Douloi Pascal Language System 115
Douloi Pascal ManyMove.dps file 256
DownTo 149
dps 245
Drag 46, 48, 64, 79, 105
drag 49, 56
Drag and Drop 64
DRAG_SQR.SAW 105, 109
dragging 57
DrawCircleFigure 111
drawing area 50
DrawLine 106, 113
DrawOn 188
DrawSquare 106
drill_head_home_position 119
DrillHeadClearancePosition 119
DrillHeadHomePosition 119
driving encoder 212
dynamic allocation 116, 131
dynamic data management 117
dynamic object 131
Dynamic Profiling 38
dynamic profiling 15, 39
dynamic respons 29

E
EARTH.BMP 83
Edit 56
Edit button 51
editor 50, 51, 59
editors 43
Electronic Cam 211
Electronic Gearing 203
Electronic gearing 207
electronic gearing 209, 221, 225
ellipse 86
emergency 37
Emergency Stop Considerations 261
empty collections 150
empty loops 152
enable 26
encapsulation 116
Encoder 24
encoder 24, 25, 27
encoder based handwheel 204
encoder resolution 212
encoders 24, 25
EndDrag 64, 79, 105
�Endif� 146
endpoint specification 108

288

equals sign 133
error checking 254
error handler 156
Error handling 159
error management 157
error result 157
ErrorCodes 226
ErrorLimit 260
ErrorPosition 260
�escape� 153
escape 40
�escape code� 154
Escape(EscapeCode) 155
EscapeCode parameter 189
EscapeProperlyHandled 159
event 43
event procedure list 64
Event Procedures 50
event procedures 59, 170
event response 65
exception 40
Exception handling 153
exception handling 40
exceptions distinguished 154

F
far cross 83
Field names 124
field names 161
File/Bring To Front 70
File/Send To Back 70
File\Choose 83
FillCamArray 213
FillVectorArray 196
filter 15
FinishFile.Click 197
FInit function 218
fixed parameter 191
fixed phase angle 207
fixed point real type 130
fixed point real types 129
fixed type interfaces 191
Floating point operations 122
�For� Loop 148
Formats and Conventions 118
FractionalUserVariable:=6.5; 129
Frame Outside 69
free format 118
function body 142
function call 115
function PushLongint(aLong:longint) 166
function PushReal16P16(aReal:Real16P16) 166
function PushReal8P24(aReal:Real8P24) 166
function return result 143
Functions 139, 142

G
Gain 25
gain 25, 29
gains 29
gear 41
Geometric Graphics 85
gift wrapped 89
Global File 247
global function EscapeCode 154
global procedures 195
�gotchas� 183
�goto� 157
Grid 67
Group/Send To Back 69
groups 40

H
HalfWidth 105, 109
halts 37
handle 48
handles 47
Heiarchy 89
Hello World 54
help 14
high frequency multitasking 152
high speed position capture 264
higher abstraction 140
history 35
HOME catalog 264
HomePositionVector 130
"Homing" 263
homing sensors 263

I
IF 146
�If� Construct 146
�If-Else� Construct 147
INC instruction 135
include files 97
incremental electronic gearing 206
"incremental" motion control 263
index 24
index pulse 25, 263
indirect data item 116
inductive load 26
�infinite loop� 151
Infix 135
infix notation 165
Infix notation floating point operations 122
Infix operations 135
infix operations 137

289

infix operators 135, 214
inheritance 116, 117
inheritance mechanism 116
inheritance relationships 116
Init 130
Init constructor 164
Init procedure 164
initialization 24
initialization behavior 64
initialization command 125
InitializeElectronicGearing 209
InitializeServoSystem 226
Input4OnMask 186
InputCapturePosition 122
InputPosition 214
instability 29
integer range 130
Integers 121
integers 144
integrator 29
integrators, servos 223
interactive application 239
interactive variable dialog 161
interface definition 225
intermediate stack frames 157
interpreted environment 225
Interpreter 31
interpreter 34, 43
interrupt handler 169
IO 16
IO error management 191
IO Errors 195
iteration 121, 145
iterations 104
iterative construct 148

J
Jog 34, 37
Jog mode 205

L
language 17
Language Overview 115
Last Task 170
Legend 50
legend 50
libraries declarations 247
Limit Switches 261
LIMITS catalog 261
linear control 28
LinkTo 41
list box 51
ListBoxes 191

local procedures 117
�local variables� 139
local variables 180
Location.X-Radius+ShadowOffset, 111
Location.Y-Radius-ShadowOffset, 111
Location:=CircleLocation[index]; 111
Long Integers, 122
Longint 73, 122
longint 130
longints, 144
loop definitions 134
looping 171

M
MachineStatus:=�Ready�; 129
�manager� procedure 158
ManyMove.dps 245
Math Coprocessor 165
math coprocessor 122
mechanical coordinate system 261
memory 19
Merged 90
Merged plates 97
Merged Subplates 97
MessageBox routines 199
metaphors 59
method 32, 33
mod (remainder operator for integer division) 136
"mod" operator 214
modal 34
motion 31
Motion Overrun 40
MotionOverrunEscapeCode 156
motor 23, 24, 26, 28
motor command 25
Motor Control Laws 170
motor current 25
motor torque 25
mouse 43
MousePosition 80, 107
MoveBy 34, 35, 40
MoveByVector 40
MoveIndex 112
movement 29
MovementFile 151
MoveTo 34, 35, 40
MoveToVector 40
multi-axis 15
multiaxis 40
multiaxis "playback" 196
multidimensional axis groups 193
multidimensional vectors 193
multiple parameters 141
Multitasking 117
multitasking 16, 17

290

multitasking capabilities 158
Multitasking System 169
MyInteger:=Round(MyRealP8P24); 130

N
n dimensional space 137
Name 55
name 33, 57
name collisions 92
native 17
"nesting" level 181
�none-of-the-above� response 156
NOT 145
ntegrator 15
NumberEditor 168
NumberOfPartsRemaining 121
numeric "stack" 165
NumericThreshold 220

O
object 32, 116
Object Based� 116
Object Based Pascal 115
Object characteristics 116
object component values 130
Object Oriented� 116
object oriented 32
Object Pascal 16, 32
object procedures 117
Object programming 163
object structure 116
object syntax 225
object types 191
�Objects� 125
offset file 264
Ok 50, 52
on-line help 34
on-the-fly 41
one-action-from-many 148
open polygon 87
Open Polygons 87
operating modes 25
OperationBuffer 76
"operator synchronization" 199
Operators 135
OR 145
ordinal constants 118
OriginalPosition 106
oscillate 29
oscillation 29
�overfilled� 134

P
parameter 33
parameter lists 164
ParameterBuffer 76
parameters 32
parenthesis 136
PartHasBeenRemoved 121
Pascal 33, 115
Pascal file IO conventions 195
Pascal parameters 114
pass-by-reference 114
PASS_OBJ.SAW 113
passing status parameters 156
path 40, 41
PD position servo 222
PerformForceReflection 222
PerformGearing 204, 208
PerformGearing routine 205
PerformManyMoves 256
period 28, 33
persistent variables 95
phase advance 208
phase advance angle 208
phase advancing 207
"phase offset" 205
PhaseAdjustment 205
physical 28
physical axis 15
PI control 25
PID control 25
PID control law 170
plate 59
Plate Appearance 60
Plate Drag Methods 79
�plate editor� 123
Plate Editor 59
plate editor 61
Plate Event Procedure 64
plate procedure 256
plate symbols 133
�plate� variables 123
plate variables 126
PlateXXX 91
PlaybackVectorFile 196
plotter 33
�point of symmetry� 221
point-pair array 211
�pointer� 143
PointIsSelected 121
pole 15
polygon 87
polymorphism 116
Pop-Up Subplates 93
pop-up subplates 93
Popup 90

291

PopUpPlate 93
position 24, 25
position capture 15
Position Control Configuration 25
position deltas 170
"position following" mode 203
position information 122
Position Maintenance 170
position servo 222
"position tracking" 203
PositioningTable.Init(XAxis,YAxis); 125
PositioningTable.MoveBy(20000,30000); 125
PositioningTable.SetServo(On); 125
Power Amplifiers 25
power system 25
precedence 136
Predefined aggregate types 124
predefined record and object types 124
predefined type 161
Predefined Types 191
private� 116
procedure calls 157
procedure FAdd 166
procedure FCos 166
procedure FDiv 166
procedure FInit; {---} 166
procedure FMul 166
procedure FSin 166
procedure FSqrt 166
procedure FSub 166
procedure Init 194
procedure invocation ladder 155
procedure Length 194
Procedure links 131
Procedure MakeManySquares 140
Procedure MakeSquare 140
Procedure MakeSquare(aSideLength:longint) 141
Procedure names 140
Procedure Plate1 114
procedure template 65, 140
procedure with parameters 141
Procedures 139
procedures 61
Procedures and Functions 139
ProcessHasFinished 121
Profile Management 170
profile parameters 15
profiling 15
Project\Add 237
projects 43
"Prompt" command 199
Prompter 34, 35, 39, 199
prompter 34, 40
pulse 24
Push Me 55, 56
PushNumber 72, 73
PushOperator 75

Q
quadrature 15, 24
quantization effect 220

R
�race� condition 176
Radius:=RadiusArray[index]; 111
RaiseDrillHead 119
RAxis 208
Read 184, 191, 195
ReadEscapeCode 191, 195
Readln 184, 191, 195
Ready 104
real time� 117
real time code 117
real time motion applications 117
real-time calculations 122
receiver 32, 33, 34
record 33
Record and Object type declarations 123
record field access 116
�Records� 125
recover block 154
recursion 142
reentrancy 171
�referencing and dereferencing� 143
RegistrationPosition 122
relative 34, 35, 40
Relocate 50, 54
�Repeat� 149
�Repeat� Loop 152
Reset Button 64
ResetButton.Click 197
Resize 50, 54
restoring torque 222
resumable exceptions 158
RevAccumulator 218
reverse 27
rotary joints 40
�ROUND� operation 130
RPN (Reverse Polish Notation) 165
RPN calculations 165
Run\Start App 50, 53, 54
Run\Stop App 61
"Runtime error 104" 188

S
safety 26
safety/limit switch task 170
sample rate 15
sample rate interrupt 169

292

SampleDelay 104
saturate 28
saturating 29
�saturating� limit switch routines 174
saturation 29
SAW drawing area 62
SAW Implementation 253
SAW main menu 61
SAW Objects 131
SAxis 208
scalar numbers 121
scale 41
Scanner 104
ScheduleTask 173, 174, 215
scoping 92
ServlLib 237
Servo Ignition utility 246
Servo program group 14
servo system 134
ServoInt Interface unit 229
ServoLib DLL 225, 237
ServoLib DLL call 225
ServoLib Dynamic Link Library 225
set behavior 118
SetAccel 34, 36, 40
SetActualPosition 39
SetBodyColor(black); 111
SetBodyColor(ColorArray[index]); 111
SetCamPosition 215
SetCommandedPosition 174
SetCoordinateFrame 107, 113
SetDecel 34, 36, 40
SetLineColor 107
setpoint displacement 211
SetSpeed 34, 40
SetTangentAxis 219, 220
Setup 64
setup 19
SETUP procedure 261
setup routine, main plate 213
shared variable flags 175
short real types 144
simple variables 121
SIMPSCOP.SAW 103
Single Axis 34
single ended 24
Single Precision IEEE Floating Point Reals 122
Single precision reals 122
"single valued" function 211
single-tasking systems 151
sketch 101
Slew 216
slew 34
slew speed 15
small variables 144
software cam 213
software failures 260

source expression 142
spliced 39
splicing 15
SquarePosition 106, 107, 111
SquarePosition.Init 107
stability 26
stable 27
standard� criteria 116
�standard protocol� 164
STANDARD.INC 245
statement groups 179
Status 104
status line 103
steady state error 29
step 28
step response 27, 28, 29
stiction 35
Stop 34, 36, 41
STOP reserved word. 248
Stop(..) 248
StopMotion 248
storage area 129
storage scope 103
�storage scope buffers� 127
straight line 33, 40
straight through cable 27
string constants 129
Strings 122, 129
strongly typed 115
struct 33
styles 60
subassemblies 43
Subplates 89
subroutine capability 65
subroutines 139
Superimposition of motion critieria 209
superseded 39
symbol scoping 92
symbolic constants 126
symbolic names 118
symbolic names for escape codes 155
synchronizing tasks 151
"system constants" 235, 245
system control menu 61
system menu 47

T
T1Axis 125
T1Axis.............single axis of motion 124
T2Axis.............2 coordinated axis of motion 124
T2Vector 80
T2Vector...........2 dimensional vector 124
T2Vectors 211
T3Axis axis group 193
T3Axis.............3 coordinated axis of motion 124

293

T3Vector 124
T3Vector...........3 dimensional vector 124
T4Axis.............4 coordinated axis of motion 124
T4Vector 119
T4Vector...........4 dimensional vector 124
T5Axis.............5 coordinated axis of motion 124
T5Vector...........5 dimensional vector 124
T6Axis 125
T6Axis.............6 coordinated axis of motion 124
T6Vector...........6 dimensional vector 124
Tangent or "Knife Cutter" Servoing 217
tangent servoing 225
TangentAngle 217, 219
target 39
Task synchronization 175
TaskOverranSample 171, 174
TaskPresent 174
TaskPresent function 176
TAxis 208
TButton............Windows Button Control (SAW

onl 124
TEdit..............Windows Edit Control (SAW only) 124
temporary variables. 114
Text 53
text 17, 33, 43, 53
text editor 54
Text Item 53
Text item 62
Text objects 191
TFile 131
TFile..............DOS File (SAW only) 124
TFiles 191, 195
theoretical 28
third party IO board 99
THPGLFile..........HPGL File Interpreter (SAW

Only 124
time critical activity 172
TimeRemaining 171, 174
TListBox...........Windows List/Combo box style co 124
TNAxis 174
TNAxis axis group 164
TNAxis machines 254
TNAxis types 125
TNVector 124, 193
TNVector types 137
TNVectors 164
To 35
tool bar 49, 53
torque 25, 28, 29
torque command 25
Torque Control 25
torque offsets 223
torques 32
TPlate 113
TPlate.............Assembly "Base" for constructin 124
TPrompter 131, 199
TPrompter..........Modal dialog to interact with o 124

track 29
tracking 35
Transconductance Mode 25
trap 40
trapezoidal motion profiles 208
trapezoidal move 208
trapezoidal profile 209, 216
trapezoidal profiler 169
trapezoidal velocity profile 219
trigonometry routines 166
TroubleEncountered: 158
�Try..Recover� 153
TText..............Output text/display (SAW only) 124
TUNEAXIS.SAW 27
tuned 27
Tuning the System 27
Turbo Pascal 116, 117
Turbo Pascal for Windows 13
TurnOnForceReflection 222
tutorial 14, 43
two dimensional 33
two dimensional vectors 212
type combination box 62
type conversion 131
type conversion problem 191
type definitions 119
Type T3Vector=object 124

U
u:longint 193
UAE 245
unconditional jump 156
uncontrolled "master" 211
underscore character 119
Update 106, 113
UpdateDisplay 110
UpdateDragLine 106, 107
UpdateSquare 106, 107
User Defined Object Types 163
User Defined Record Types 161
User Defined Types 161
User Disable inputs 245
user disable inputs "or-ed" 262
User Procedure 65
user procedures 59
User Symbols 61

V
" var " 114
v:longint 193
var <variable name> : <variable type> ; 123
var DataBuffer:array[1..DataBufferSize] of longint 127
var DeltaVector:T2Vector; 111

294

var ErrorMessageText:string[127]; 122
var FirstTimeThroughProcedure:boolean; 123
VAR keyword 144
var LastRecordedCommand:string[63]; 122
var Length:integer; 111
var Location:T2Vector; 111
var MinimumDistance:integer; 111
var MoveDistance:longint; 123
var PositioningTable:T2Axis; 125
var Radius:integer; 111
VAR reference pointer 144
var scanner:integer; 111
�var� statement 123
var TorqueValue:integer; 123
var UserMessage:string; 123
variable cam amplitudes 212
variable declaration 123, 141
variable declaration dialog box 134
variable editor 62
variable names 118
variable paths 92
Variables 121
variables 59, 61
vb_inter.glo file 247
vector 40
vector addition and subtraction 137
vector coordinate 40
vector cross 194
vector displacement 194
vector multiplication 137
Vectors 137
Vectors infix operators 194
vertexes 87
VGA 19
vibrate 29
View/Grids... 67
"virtual axis" 208, 211
virtual method table 131
visual 43
Visual Basic 13, 14, 32, 116
VMT needs 131
�void� functions 139

W
w:longint 193
Watchdog Safety System 260
�While� 149
�While� Loop 150
"wind up" 217
winding mandrel 211
Windows 50
windows controls 117
Windows language system 225
Windows Mail 171
Windows memory 117

"wrap around" point 213
Write 191, 195
WriteEscapceCode 191
WriteEscapeCode 195
Writeln 34, 35, 39, 56, 191, 195
WriteSquares 197

X
X 32, 33
x:longint 193
X:longint; 124
XAxis 35, 39, 104
XAxis value 198
XYAxis.MoveTo 108

Y
Y 33
y:longint 193
Y:longint; 124
YAxis value 198
Yield 174
�yield� instruction 151
"yield" instruction 185

Z
z:longint 193
Z:longint; 124
ZAxis.MoveTo 119
zero 15, 29

	Table of Contents
	1) Introduction
	Welcome!
	Objective of Document
	Motion Server Specifications
	Motion System
	Servo Capabilities
	Stepper Capabilities
	Timer Event
	Multiple Motion Application Threads
	Microsoft Windows '95 and Windows NT
	Long-Slot ISA Format
	Servo Application Workbench

	Methods Of Use
	Servo Application Workbench
	32-bit Dynamic Link Library
	ASCII Commands
	Binary Commands

	2) Setting Up the System
	Purpose
	System Requirements
	Software Installation
	Servo Application Workbench Installation
	Think & Do Installation
	Visual C++ and Visual Basic
	Example Setup Procedure

	Hardware Installation
	External Connections

	Servo Motor Setup
	Hooking up the Encoder
	Confirming Proper Encoder Operation
	Connecting Motion Server to Servo Power Amplifiers
	Confirming Proper Amplifier Operation
	Tuning the System
	Starting the Test
	Interpretation
	Avoid Saturation
	Tuning Guidelines
	Achieving 0 Steady State Error

	Stepper Motor Setup

	3) Introduction to Motion
	Purpose
	Preliminary Motion
	Command Structure
	Single Axis Modes of Motion
	Dynamic Profiling
	Multiple Axis Modes of Motion

	4) Servo Application Workbench Tutorial
	Introduction to SAW
	Lesson 1- Running a Minimum SAW Application
	Objective
	Start SAW
	Run the Default Application
	Modify the Default Application
	 Summary

	Lesson 2 - Creating a Button
	 Objective
	Create a Button
	Modify a Button Appearance
	Modify a Button Behavior
	 Summary

	Lesson 3 - Creating Text
	Objective
	Create a Text Item
	Change Text Interactively
	Change Text with a Program
	Questions and Answers
	Summary

	Lesson 4 - Using Plates
	Objective
	Change a Plate Title
	Change a Plate Appearance
	Create a Plate Variable
	Change a Plate Variable
	Change a Plate Event Procedure
	Create a Plate User Procedure
	Summary

	Lesson 5 - Using Bump Graphics
	Objective
	Turn on the Grid
	Create a Bump
	Modify a Bump
	Place a Dip on Top of a Bump
	Reorder Graphics
	Summary

	Lesson 6 - Calculator Project
	Objective
	Create Calculator Faceplate
	Create Calculator Number Keys
	Create Procedure PushNumber
	Create Calculator Operation Keys
	Create Equals Key
	Create Clear Key
	Test the Calculator
	Summary

	Lesson 7 - Using Plate Drag Methods
	Objective
	Create a Display
	Edit the BeginDrag Method
	Edit the Drag Method
	Edit the EndDrag Method
	Summary

	Lesson 8 - Using Bitmap Graphics
	Objective
	Select the Bitmap Filename
	Crop Bitmap
	Position Bitmap
	Summary

	Lesson 9 - Using Geometric Graphics
	Objective
	Drawing a Line
	Drawing a Rectangle
	Drawing a Rounded Corner Rectangle
	Creating an Ellipse
	Drawing Closed Polygons
	Drawing Open Polygons
	Summary

	Lesson 10 - Using Attached Subplates
	Objective
	Creating a subplate
	Summary

	Lesson 11 - Using Pop-Up Subplates
	Objective
	Creating a pop-up subplate
	Summary

	Lesson 12 - Using Merged Subplates
	Objective
	Creating a Merged Subplate
	Adding Graphics to Plates
	Comparing with Attached Plate
	Summary

	5) Application Sketches
	Purpose
	Simple X Axis Storage Scope
	Description
	How It Works

	Dragging and Dropping a Square
	Description
	How It Works
	Questions and Answers
	Technique Applications

	Mouse Indicated Selection
	Description
	How It Works

	Passing Object Parameters
	Description
	How It Works
	Questions and Answers

	6) The Douloi Pascal Language
	Introduction to the Language System
	Purpose
	Language Overview
	Formats and Conventions

	Variables
	Purpose
	Fundamental Types
	Boolean
	Integer
	Longint
	String
	Single Precision IEEE Floating Point Reals
	Double Precision IEEE Floating Point Reals

	Usage
	Aggregate Types
	Arrays

	Assignment
	Purpose
	Assignment of Simple Types
	Assignment of Aggregate Types

	Constants
	Purpose
	Description

	Operators
	Purpose
	Operators for simple types
	Operators for aggregate types

	Procedures and Functions
	Purpose
	Procedures
	Functions
	Call-By-Value and Call-By-Reference

	Control Structures
	Purpose
	Control Structure Principles
	"If" Construct
	"If-Else" Construct
	"For" Loop
	"While" Loop
	"Repeat" Loop
	"Try..Recover"

	User Defined Types
	Purpose
	User Defined Record Types
	User Defined Object Types

	Using the Math Coprocessor
	Purpose
	Calculator Model
	Calculation Procedures and Functions
	Math Coprocessor Examples
	Adding Two Numbers
	Calculating The Sin of a Number

	Multitasking System
	Purpose
	Multitasking Model
	Position Maintenance
	Motor Control Laws
	Profile Management
	Conventional Tasks
	Last Task

	Cooperative Multitasking
	Windows Mail
	Multitasker Commands

	Techniques
	"Saturating" limit switch routine.

	Task synchronization
	Synchronization Approach 1, Shared Variables
	Synchronization Approach 2, Task Status
	Synchronization Approach 3, Don't multitask

	Program Formatting
	Purpose
	Principles
	Summary

	Gotchas
	Purpose
	Statements Apparently Fail to Execute
	Unexpected Escape During File Reads
	Information Being Collected Does Not Change
	Program Locks While Waiting for Motion To Finish
	Incorrect Branching When Using Masked Inputs
	Subplate Does Not Appear When Application Starts
	Drawn Lines Do Not Appear On Plate 1
	Drawn Lines Do Not Appear On Plate 2
	Runtime Error 104
	Nothing Happens When a DLL Call Is Made

	7) Predefined Types
	Purpose
	Reading and Writing Conventions
	TNVector
	Description
	Fields
	Methods
	Examples

	TFile (SAW only)
	Description
	Methods
	Examples

	TPrompter (SAW only)
	Description
	Methods
	Examples

	8) Advanced Motion Capabilities
	Purpose
	Electronic Gearing
	Description
	Fundamental Principles
	Implementation
	Limitations

	Electronic Gearing with Trapezoidal Phase Advance
	Description
	Fundamental Principles
	Implementation

	Electronic Cam
	Description
	Fundamental Principles
	Implementation
	Limitations

	Tangent or "Knife Cutter" Servoing
	Description
	Fundamental Principles
	Implementation
	Limitations

	Bi-directional Force Reflection
	Description
	Fundamental Principles
	Implementation
	Limitations

	9) Using the ServoLib Dynamic Link Library
	Purpose
	Functionality through Douloi Pascal
	Functionality through Direct Calls
	Usage
	Turbo Pascal for Windows DLL Examples
	TPW Example 1 - Direct Access
	Description
	Source Code
	Explanation

	TPW Example 2 - Direct Access
	Description
	Source Code
	Explanation

	TPW Example 3 - Combined Access
	Description
	Douloi Pascal Source Code
	Source Code
	Explanation

	Turbo C++ for Windows DLL Examples
	C++ Example 1 - Direct Access
	Description
	Source Code
	Explanation

	C++ Example 2 - Direct Access
	Description
	Source Code
	Explanation

	C++ Example 3 - Combined Access
	Description
	Douloi Pascal Source Code
	Source Code
	Explanation

	Visual Basic DLL Examples
	Visual Basic Example 1 - Direct Access
	Description
	Source Code
	Explanation

	Visual Basic Example 2 - Direct Access
	Description
	Source Code
	Explanation

	Visual Basic Example 3 - Combined Access
	Description
	Douloi Pascal Source Code
	Source Code
	Explanation

	SAW Implementation of DLL Examples
	SAW Implementation of Example 1
	Description
	Source Code
	Explanation

	SAW Implementation of Example 2
	Description
	Source Code
	Explanation

	Saw Implementation of Example 3
	Description
	Source Code
	Explanation

	10) System Design Issues
	Safety
	Purpose
	Limitations of Application
	Responsibility
	Built-In Safety Features
	Limit Switches
	Emergency Stop Considerations

	Initialization
	Purpose
	Traditional Homing Strategy

	11) Command Summary
	Purpose
	Primitive Data Types
	TNVector Objects - Multidimensional Vectors with N ranging from 2 to 6
	Math Coprocessor Operations (Douloi Pascal only)
	Multitasking
	IO Operations
	Safety
	Numeric
	Exception Handling
	TPlate Objects - Assembly Foundations/Drawing Surfaces (SAW only)
	TStatic Object - Static Text/Display Object (SAW only)
	TEditor Object - Single Line Text Editor (SAW only)
	TListBox Object - List Box Text Selection Object (SAW only)
	TFile Object - DOS File Access Object (SAW only)
	THPGLFile Object (SAW only)
	TPrompter Object - Message Box Object (SAW only)
	TNAxis Object - Multi-Axis Motion Object
	Escape Code Constants
	Mathematical Constants
	Boolean Constants
	Torque Descriptions
	Pen line styles
	Pen colors
	HPGL Command Constants

	12) Cables and Connectors
	Description
	Axis Group Connectors
	I/O Connector
	E-Stop Connector
	External Bus Connector

	Axis Signal Descriptions
	Encoder A+, A-, B+, B-, I+, I-
	Functional Description
	Electrical Description

	Amp Enable High, Amp Enable Low
	Functional Description
	Electrical Description

	Position Capture
	Functional Description
	Electrical Description

	Position Compare
	Functional Description
	Electrical Description

	Motor Command
	Functional Description
	Electrical Description

	Step Pulse, Direction
	Functional Description
	Electrical Description

	+5 Volts, Ground
	Description

	Pin Numbering Conventions
	Axis Group Connector Definitions, 2-Row IDC
	Axis Group Connector Definitions, D-Style
	I/O Connector Definition
	EStop Connector Definition
	External Bus Connector

	Index
	Symbols
	* (Multiplication operator)
	*.BMP
	+ (Plus operator)
	- (Minus operator)
	/ (real division, i.e. fractional)
	2 dimensional vector
	3 channel encoder
	3 dimensional vector
	32 bit 386 object code
	32 bit "short reals"
	386 INC instruction
	4 dimensional vector type
	5 Hz PositionDisplay
	6 dimensional vectors
	80 bit real format

	A
	A
	Abort
	abort button
	AbortMotion
	absolute
	Accel
	acceleration
	actual
	actual position
	ActualPosition
	AddPointToFileButton.Click
	AdvancePhaseButton.Click
	AfterVector
	aggregate structures
	Aggregate Types
	aggregate types
	aggregate variable mechanisms
	amp enable signal
	amplifier
	Amplifier enable
	amplifier enable inputs
	amplifier enable lines
	AnchorVector
	AND
	angular accumulation
	angular displacement
	annotate
	ANSI committee for C++
	AnswerDisplay
	Appendix B
	AppendMoveBy
	AppendMoveTo
	application
	arc tangent function
	arctan
	arm
	array
	array bound declarations
	array declarations
	array information
	Arrays
	arrays
	ASCII
	ASCII information
	ASCII interface
	"ASCIIZ" strings
	assembly level INC
	Assignment
	assignment operator
	assignment statements
	Attached
	Attached Subplates
	AUTOEXEC
	axis
	axis group
	axis group types
	axis groups

	B
	B
	backup
	backwards
	"BasePosition"
	BeforeVector
	Begin
	BeginDrag
	"BeginMoveBy"
	BeginMoveBy
	BeginMoveByVector
	BeginMoveTo
	BeginMoveToVector
	BeginStop
	BeginTask
	BeginTaskAtCName
	bi-directional behavior
	Bi-directional force
	Bi-directional Force Reflection
	"Bi-directional Force Reflection" mode
	"binary search" technique
	BIOS routines
	bitmaps
	"blocks"
	boolean constant
	boolean plate variable
	Boolean variables
	booleans
	border
	Borland's Turbo Pascal for Windows
	boundary position
	BufferSize
	built-in home behaviors
	Bump Graphics
	bump handles
	Bump Tool
	Bumps
	bumps
	button
	Button Tool
	"Button Up"
	button-specific
	Button5
	Buttons
	buttons
	By

	C
	"C style" strings
	C++
	cable
	"CalcTest"
	"Calculator"
	Calculator Project
	Call-By-Reference
	call-by-reference
	Call-By-Value
	call-by-value
	"called-by-reference".
	caller "profiling"
	calling routine
	cam geometry
	cam rotation
	CamArray
	CamOutputPosition
	CamScaleFactor
	caption
	Cartesian
	Case statements
	Catalogs
	chamfered edges
	channel
	Channels
	channels
	Check Encoder
	CHECKAMP.EXE
	CheckTask
	Clear
	Click
	click procedure
	"click" procedures
	clicking
	clip art
	Close
	closed polygons
	Code
	Collect
	collection size
	Combined Access
	commanded
	commanded position
	commanded setpoint
	CommandedPosition
	commands
	comparison operators
	"compartment" labels
	"compartments"
	compensation
	Compile
	compile time evaluation
	compile-time error detection
	compiler
	complement
	"component" compartments
	component storage areas
	compound conditional expressions
	compound statement
	Conditional expressions
	conditional jumps and iteration
	conditional termination
	confused stack
	const CamArrayLength
	const ShadowOffset=3;
	Constant
	constant declaration
	Constant Editor
	constants
	constructor
	continuous
	control key
	control law
	control law calculations
	Control Structure Principles
	Control Structures
	Control-Drag
	control-dragging
	controller
	controller sample rate
	"conventional math"
	Conventional Tasks
	Cooperative Multitasking
	coordinated
	coordinated motion
	copy
	"copy" activity
	cropping
	"cross product"
	Current Control
	current position
	CurrentMotorTorque
	CurrentPosition:=LastPosition;
	CurrentVector
	cursor
	cursor shape
	curve
	curved
	custom axis coordination

	D
	Data
	data structures
	DataBufferIndex
	Decel
	deceleration
	decrementing loop variable
	default
	default application
	default choice "Variable"
	default parameter passing model
	default plate
	default recover block
	default Window
	default window
	Delay
	DeltaVector
	demo programs
	descriptive cam geometry
	"desk organizers"
	destination
	destructor
	destructors
	differential
	direct DLL calls
	disable
	DisengageHighSpeedClock
	disk
	displacement
	displacement value
	"Display"
	display
	display coordinates
	DisplayValue
	DistanceToGo
	div (integer division)
	DLL
	DLL connectivity
	DLLs
	do it
	DOS batch file
	DOS files
	DOS rentrance limitation
	"dot"
	dot product multiplication
	Double click
	double click
	double clicking
	Double Precision IEEE Floating Point Reals
	Douloi Pascal
	Douloi Pascal Language System
	Douloi Pascal ManyMove.dps file
	DownTo
	dps
	Drag
	drag
	Drag and Drop
	DRAG_SQR.SAW
	dragging
	DrawCircleFigure
	drawing area
	DrawLine
	DrawOn
	DrawSquare
	drill_head_home_position
	DrillHeadClearancePosition
	DrillHeadHomePosition
	driving encoder
	dynamic allocation
	dynamic data management
	dynamic object
	Dynamic Profiling
	dynamic profiling
	dynamic respons

	E
	EARTH.BMP
	Edit
	Edit button
	editor
	editors
	Electronic Cam
	Electronic Gearing
	Electronic gearing
	electronic gearing
	ellipse
	emergency
	Emergency Stop Considerations
	empty collections
	empty loops
	enable
	encapsulation
	Encoder
	encoder
	encoder based handwheel
	encoder resolution
	encoders
	EndDrag
	"Endif"
	endpoint specification
	equals sign
	error checking
	error handler
	Error handling
	error management
	error result
	ErrorCodes
	ErrorLimit
	ErrorPosition
	"escape"
	escape
	"escape code"
	Escape(EscapeCode)
	EscapeCode parameter
	EscapeProperlyHandled
	event
	event procedure list
	Event Procedures
	event procedures
	event response
	exception
	Exception handling
	exception handling
	exceptions distinguished

	F
	far cross
	Field names
	field names
	File/Bring To Front
	File/Send To Back
	File\Choose
	FillCamArray
	FillVectorArray
	filter
	FinishFile.Click
	FInit function
	fixed parameter
	fixed phase angle
	fixed point real type
	fixed point real types
	fixed type interfaces
	Floating point operations
	"For" Loop
	Formats and Conventions
	FractionalUserVariable:=6.5;
	Frame Outside
	free format
	function body
	function call
	function PushLongint(aLong:longint)
	function PushReal16P16(aReal:Real16P16)
	function PushReal8P24(aReal:Real8P24)
	function return result
	Functions

	G
	Gain
	gain
	gains
	gear
	Geometric Graphics
	gift wrapped
	Global File
	global function EscapeCode
	global procedures
	"gotchas"
	"goto"
	Grid
	Group/Send To Back
	groups

	H
	HalfWidth
	halts
	handle
	handles
	Heiarchy
	Hello World
	help
	high frequency multitasking
	high speed position capture
	higher abstraction
	history
	HOME catalog
	HomePositionVector
	"Homing"
	homing sensors

	I
	IF
	"If" Construct
	"If-Else" Construct
	INC instruction
	include files
	incremental electronic gearing
	"incremental" motion control
	index
	index pulse
	indirect data item
	inductive load
	"infinite loop"
	Infix
	infix notation
	Infix notation floating point operations
	Infix operations
	infix operations
	infix operators
	inheritance
	inheritance mechanism
	inheritance relationships
	Init
	Init constructor
	Init procedure
	initialization
	initialization behavior
	initialization command
	InitializeElectronicGearing
	InitializeServoSystem
	Input4OnMask
	InputCapturePosition
	InputPosition
	instability
	integer range
	Integers
	integers
	integrator
	integrators, servos
	interactive application
	interactive variable dialog
	interface definition
	intermediate stack frames
	interpreted environment
	Interpreter
	interpreter
	interrupt handler
	IO
	IO error management
	IO Errors
	iteration
	iterations
	iterative construct

	J
	Jog
	Jog mode

	L
	language
	Language Overview
	Last Task
	Legend
	legend
	libraries declarations
	Limit Switches
	LIMITS catalog
	linear control
	LinkTo
	list box
	ListBoxes
	local procedures
	"local variables"
	local variables
	Location.X-Radius+ShadowOffset,
	Location.Y-Radius-ShadowOffset,
	Location:=CircleLocation[index];
	Long Integers,
	Longint
	longint
	longints,
	loop definitions
	looping

	M
	MachineStatus:='Ready';
	"manager" procedure
	ManyMove.dps
	Math Coprocessor
	math coprocessor
	mechanical coordinate system
	memory
	Merged
	Merged plates
	Merged Subplates
	MessageBox routines
	metaphors
	method
	mod (remainder operator for integer division)
	"mod" operator
	modal
	motion
	Motion Overrun
	MotionOverrunEscapeCode
	motor
	motor command
	Motor Control Laws
	motor current
	motor torque
	mouse
	MousePosition
	MoveBy
	MoveByVector
	MoveIndex
	movement
	MovementFile
	MoveTo
	MoveToVector
	multi-axis
	multiaxis
	multiaxis "playback"
	multidimensional axis groups
	multidimensional vectors
	multiple parameters
	Multitasking
	multitasking
	multitasking capabilities
	Multitasking System
	MyInteger:=Round(MyRealP8P24);

	N
	n dimensional space
	Name
	name
	name collisions
	native
	"nesting" level
	"none-of-the-above" response
	NOT
	ntegrator
	NumberEditor
	NumberOfPartsRemaining
	numeric "stack"
	NumericThreshold

	O
	object
	Object Based"
	Object Based Pascal
	Object characteristics
	object component values
	Object Oriented"
	object oriented
	Object Pascal
	object procedures
	Object programming
	object structure
	object syntax
	object types
	"Objects"
	offset file
	Ok
	on-line help
	on-the-fly
	one-action-from-many
	open polygon
	Open Polygons
	operating modes
	OperationBuffer
	"operator synchronization"
	Operators
	OR
	ordinal constants
	OriginalPosition
	oscillate
	oscillation
	"overfilled"

	P
	parameter
	parameter lists
	ParameterBuffer
	parameters
	parenthesis
	PartHasBeenRemoved
	Pascal
	Pascal file IO conventions
	Pascal parameters
	pass-by-reference
	PASS_OBJ.SAW
	passing status parameters
	path
	PD position servo
	PerformForceReflection
	PerformGearing
	PerformGearing routine
	PerformManyMoves
	period
	persistent variables
	phase advance
	phase advance angle
	phase advancing
	"phase offset"
	PhaseAdjustment
	physical
	physical axis
	PI control
	PID control
	PID control law
	plate
	Plate Appearance
	Plate Drag Methods
	"plate editor"
	Plate Editor
	plate editor
	Plate Event Procedure
	plate procedure
	plate symbols
	"plate" variables
	plate variables
	PlateXXX
	PlaybackVectorFile
	plotter
	"point of symmetry"
	point-pair array
	"pointer"
	PointIsSelected
	pole
	polygon
	polymorphism
	Pop-Up Subplates
	pop-up subplates
	Popup
	PopUpPlate
	position
	position capture
	Position Control Configuration
	position deltas
	"position following" mode
	position information
	Position Maintenance
	position servo
	"position tracking"
	PositioningTable.Init(XAxis,YAxis);
	PositioningTable.MoveBy(20000,30000);
	PositioningTable.SetServo(On);
	Power Amplifiers
	power system
	precedence
	Predefined aggregate types
	predefined record and object types
	predefined type
	Predefined Types
	private"
	procedure calls
	procedure FAdd
	procedure FCos
	procedure FDiv
	procedure FInit; {---}
	procedure FMul
	procedure FSin
	procedure FSqrt
	procedure FSub
	procedure Init
	procedure invocation ladder
	procedure Length
	Procedure links
	Procedure MakeManySquares
	Procedure MakeSquare
	Procedure MakeSquare(aSideLength:longint)
	Procedure names
	Procedure Plate1
	procedure template
	procedure with parameters
	Procedures
	procedures
	Procedures and Functions
	ProcessHasFinished
	Profile Management
	profile parameters
	profiling
	Project\Add
	projects
	"Prompt" command
	Prompter
	prompter
	pulse
	Push Me
	PushNumber
	PushOperator

	Q
	quadrature
	quantization effect

	R
	"race" condition
	Radius:=RadiusArray[index];
	RaiseDrillHead
	RAxis
	Read
	ReadEscapeCode
	Readln
	Ready
	real time"
	real time code
	real time motion applications
	real-time calculations
	receiver
	record
	Record and Object type declarations
	record field access
	"Records"
	recover block
	recursion
	reentrancy
	"referencing and dereferencing"
	RegistrationPosition
	relative
	Relocate
	"Repeat"
	"Repeat" Loop
	Reset Button
	ResetButton.Click
	Resize
	restoring torque
	resumable exceptions
	RevAccumulator
	reverse
	rotary joints
	"ROUND" operation
	RPN (Reverse Polish Notation)
	RPN calculations
	Run\Start App
	Run\Stop App
	"Runtime error 104"

	S
	safety
	safety/limit switch task
	sample rate
	sample rate interrupt
	SampleDelay
	saturate
	saturating
	"saturating" limit switch routines
	saturation
	SAW drawing area
	SAW Implementation
	SAW main menu
	SAW Objects
	SAxis
	scalar numbers
	scale
	Scanner
	ScheduleTask
	scoping
	ServlLib
	Servo Ignition utility
	Servo program group
	servo system
	ServoInt Interface unit
	ServoLib DLL
	ServoLib DLL call
	ServoLib Dynamic Link Library
	set behavior
	SetAccel
	SetActualPosition
	SetBodyColor(black);
	SetBodyColor(ColorArray[index]);
	SetCamPosition
	SetCommandedPosition
	SetCoordinateFrame
	SetDecel
	SetLineColor
	setpoint displacement
	SetSpeed
	SetTangentAxis
	Setup
	setup
	SETUP procedure
	setup routine, main plate
	shared variable flags
	short real types
	simple variables
	SIMPSCOP.SAW
	Single Axis
	single ended
	Single Precision IEEE Floating Point Reals
	Single precision reals
	"single valued" function
	single-tasking systems
	sketch
	Slew
	slew
	slew speed
	small variables
	software cam
	software failures
	source expression
	spliced
	splicing
	SquarePosition
	SquarePosition.Init
	stability
	stable
	standard" criteria
	"standard protocol"
	STANDARD.INC
	statement groups
	Status
	status line
	steady state error
	step
	step response
	stiction
	Stop
	STOP reserved word.
	Stop(..)
	StopMotion
	storage area
	storage scope
	"storage scope buffers"
	straight line
	straight through cable
	string constants
	Strings
	strongly typed
	struct
	styles
	subassemblies
	Subplates
	subroutine capability
	subroutines
	Superimposition of motion critieria
	superseded
	symbol scoping
	symbolic constants
	symbolic names
	symbolic names for escape codes
	synchronizing tasks
	"system constants"
	system control menu
	system menu

	T
	T1Axis
	T1Axis.............single axis of motion
	T2Axis.............2 coordinated axis of motion
	T2Vector
	T2Vector...........2 dimensional vector
	T2Vectors
	T3Axis axis group
	T3Axis.............3 coordinated axis of motion
	T3Vector
	T3Vector...........3 dimensional vector
	T4Axis.............4 coordinated axis of motion
	T4Vector
	T4Vector...........4 dimensional vector
	T5Axis.............5 coordinated axis of motion
	T5Vector...........5 dimensional vector
	T6Axis
	T6Axis.............6 coordinated axis of motion
	T6Vector...........6 dimensional vector
	Tangent or "Knife Cutter" Servoing
	tangent servoing
	TangentAngle
	target
	Task synchronization
	TaskOverranSample
	TaskPresent
	TaskPresent function
	TAxis
	TButton............Windows Button Control (SAW onl
	TEdit..............Windows Edit Control (SAW only)
	temporary variables.
	Text
	text
	text editor
	Text Item
	Text item
	Text objects
	TFile
	TFile..............DOS File (SAW only)
	TFiles
	theoretical
	third party IO board
	THPGLFile..........HPGL File Interpreter (SAW Only
	time critical activity
	TimeRemaining
	TListBox...........Windows List/Combo box style co
	TNAxis
	TNAxis axis group
	TNAxis machines
	TNAxis types
	TNVector
	TNVector types
	TNVectors
	To
	tool bar
	torque
	torque command
	Torque Control
	torque offsets
	torques
	TPlate
	TPlate.............Assembly "Base" for constructin
	TPrompter
	TPrompter..........Modal dialog to interact with o
	track
	tracking
	Transconductance Mode
	trap
	trapezoidal motion profiles
	trapezoidal move
	trapezoidal profile
	trapezoidal profiler
	trapezoidal velocity profile
	trigonometry routines
	TroubleEncountered:
	"Try..Recover"
	TText..............Output text/display (SAW only)
	TUNEAXIS.SAW
	tuned
	Tuning the System
	Turbo Pascal
	Turbo Pascal for Windows
	TurnOnForceReflection
	tutorial
	two dimensional
	two dimensional vectors
	type combination box
	type conversion
	type conversion problem
	type definitions
	Type T3Vector=object

	U
	u:longint
	UAE
	unconditional jump
	uncontrolled "master"
	underscore character
	Update
	UpdateDisplay
	UpdateDragLine
	UpdateSquare
	User Defined Object Types
	User Defined Record Types
	User Defined Types
	User Disable inputs
	user disable inputs "or-ed"
	User Procedure
	user procedures
	User Symbols

	V
	" var "
	v:longint
	var <variable name> : <variable type> ;
	var DataBuffer:array[1..DataBufferSize] of longint
	var DeltaVector:T2Vector;
	var ErrorMessageText:string[127];
	var FirstTimeThroughProcedure:boolean;
	VAR keyword
	var LastRecordedCommand:string[63];
	var Length:integer;
	var Location:T2Vector;
	var MinimumDistance:integer;
	var MoveDistance:longint;
	var PositioningTable:T2Axis;
	var Radius:integer;
	VAR reference pointer
	var scanner:integer;
	"var" statement
	var TorqueValue:integer;
	var UserMessage:string;
	variable cam amplitudes
	variable declaration
	variable declaration dialog box
	variable editor
	variable names
	variable paths
	Variables
	variables
	vb_inter.glo file
	vector
	vector addition and subtraction
	vector coordinate
	vector cross
	vector displacement
	vector multiplication
	Vectors
	Vectors infix operators
	vertexes
	VGA
	vibrate
	View/Grids...
	"virtual axis"
	virtual method table
	visual
	Visual Basic
	VMT needs
	"void" functions

	W
	w:longint
	Watchdog Safety System
	"While"
	"While" Loop
	"wind up"
	winding mandrel
	Windows
	windows controls
	Windows language system
	Windows Mail
	Windows memory
	"wrap around" point
	Write
	WriteEscapceCode
	WriteEscapeCode
	Writeln
	WriteSquares

	X
	X
	x:longint
	X:longint;
	XAxis
	XAxis value
	XYAxis.MoveTo

	Y
	Y
	y:longint
	Y:longint;
	YAxis value
	Yield
	"yield" instruction
	"yield" instruction

	Z
	z:longint
	Z:longint;
	ZAxis.MoveTo
	zero

