
1

Introduction

 Microsoft Windows ®  has emerged as a standard

for user interfaces on the IBM PC. Although simple and

familiar to the user of an application, Windows can be

intimidating for motion application developers. The

inherent complexity of Windows is additionally compli-

cated by real time issues necessary for solving motion

control problems. Windows does not, by itself, work

well for real time applications.

  An application development environment named

“Servo Application Workbench” (SAW) is described

which simplifies the creation of high performance mo-

tion control Windows applications.

The Servo Application Workbench augments Win-

dows with a multitasker that addresses the real time

limitations of Windows. A motion system is included

that can coordinate 1 to 6 servo axis through continuous

paths and perform motion profile “splicing”. A “Screen

Painter” is included that allows the user to create a

control panel for the application. Using a “clip art”

metaphor the user can browse through software “cata-

logs” of pre-fabricated subassemblies and paste selec-

tions into the application. Additional program behaviors

not associated with the catalog parts can be added to the

application with the built in Object Based Pascal lan-

guage.

The language system allows the user to run mul-

tiple programs at the same time simplifying the construc-

tion of advanced applications. Multitasking programs

can communicate to the control panel that has been

painted, the motion system, IO boards in the PC, and

each other. The language allows the user to describe

application related objects and to combine these object

descriptions with related operations to manipulate them.

The language includes a “try..recover” style structured

exception handling mechanism that allows simpler man-

agement of corrective procedures when errors are de-

tected.

  The Servo Application Workbench permits de-

velopers to quickly and simply create high quality and

performance real time Windows motion control applica-

tions. An example telemanipulator application will be

described to illustrate how an application environment

can simplify development.

  The following sections include a description of

an example application, application construction, dis-

cussion of the development environment contribution,

and summary.

Example Application

To provide a context for discussing motion appli-

cation development consider the following telema-

nipulator application.

A telemanipulator system is composed of two

kinematically equivalent backdrivable mechanisms. A

motion application is needed to provide the following

behaviors:

J. Randolph Andrews
Douloi Automation

740 Camden Avenue Suite A1
Campbell, CA  95008-4102

(408) 374-6322 A U T O M A T I O N

Paper presented at the
1992 Incremental Motion

Control Systems and
Devices Symposium

Copyright © 1992 Douloi Automation

A SERVO APPLICATION DEVELOPMENT ENVIRONMENT
FOR MICROSOFT WINDOWS ®



2

Position Tracking Mode

In position tracking mode the slave manipulator

follows the positions of the master. The master mecha-

nism is passive being used as a multi-dimensional joy-

stick to direct the servoing slave mechanism.

Force Reflection Mode

In force reflection mode both master and slave

mechanisms are under servo control. Pushing against the

master mechanism causes the master to move and the

slave to follow. Pushing against the slave mechanism

causes the slave to move and the master to follow. The

system behaves as if mechanical shafts were connecting

master mechanism joints to the corresponding slave

mechanism joints. This bi-directional causality implies

that forces encountered by the slave are felt by the

operator providing the operator with reflected force

information. This is a type of multiple-input, multiple-

output problem since the directives to both the master

and slave servos are related to the state of both the master

and slave mechanisms.

Position Displays

The control panel should provide continuous dis-

play of the location of both the master and slave mecha-

nisms.

Error Display Graph

A graphical display of the position difference

between the master and slave would be useful for con-

firming good tracking behavior.

Abort Button

A means of ending the current mode and disabling

the servos is required in order to quickly shutdown the

system.

Figure 1 shows a motion application which dis-

plays these behaviors. The construction of this applica-

tion will be described in the following sections. The

application behaves like other Microsoft Windows ap-

plications such as dragging by the title bar and display-

ing system options when the upper left icon is selected.

The current telemanipulator mode and mechanism posi-

tions are seen on the main panel. The error display is

shown "popped up" on top of the main Telemanipulator

Control window.

Figure 1. Telemanipulator Application

Figure 2. Elastic Shaft Model

Force Reflection Approach

This example application uses a force reflection

approach based on the elastic shaft model shown in

figure 2.



3

One end of the shaft represents a master joint  and

the other end of the shaft represents the corresponding

slave joint. Consider the case that the slave has encoun-

tered an obstacle and, constrained not to rotate, is

temporarily grounded. A torque  applied to the master

end of the shaft causes an angular strain, theta, propor-

tional to that applied torque. Half way down the length

of the shaft a strain of Theta/2 has occurred. The “point

of symmetry” in this problem is the middle of the shaft

since either mechanism can direct the system behavior in

force reflection mode. By establishing a reference frame

along the rotated theta/2 section of the shaft midpoint it

can be seen that each end of the shaft is attempting to

elastically return to 0 angular displacement with respect

to this frame.

The most fundamental behavior of a position

servo is to apply a restoring torque proportional to an

angular displacement from a commanded set point.

Accordingly, one simple implementation of bi-direc-

tional force reflection is to use a PD position servo for

each mechanism and continually command each servo to

move to the average position of the two.

The Plate Metaphor

  SAW uses several different metaphors to convey

concepts to the developer. One metaphor is the idea of a

“plate”. When building a conventional control panel,

holes are cut in a selected piece of metal and control

items such as buttons are attached to this metal “plate”.

The plate serves as a way of associating these various

elements together to achieve a particular purpose. Simi-

larly, SAW uses the idea of a control panel “plate”. Most

plates have a conventional window appearance. Compo-

nents attach to a plates and  may have spatial content such

as graphics and Windows controls or non-spatial, purely

informational content such as data structures, variables,

and procedures. Plates may also have attached to them

other plates, either “panel mounted” directly to the

parent plate and continuously visible or “pendant

mounted” such that the plate is normally invisible until

requested to “pop up”. This permits the construction of

hierarchical plate assemblies.

Changing Component Attributes

Single clicking on a component, such as the

default plate, selects that component for subsequent

operations. The component is given “handles” which

allow the developer to alter the position and size of the

component by dragging the handles to new locations.

  Application Construction

The following sections describe the principles

and metaphors used in constructing an application with

the Servo Application Workbench.

 SAW Overview

Figure 3 shows the appearance of the Servo

Application Workbench ready to build an application.

The SAW main window contains a drawing area with

two rows of “tools” on the left side. The left tool row

creates graphic images to place in the application such as

colored rectangles, circles, and raised surfaces. The right

tool row creates Windows controls such as buttons and

editors as well as specialized controls such as plotters. A

default plate is seen in the drawing area.

Figure 3. SAW Overview



4

Double clicking on the component produces an

editor which allows the developer to change the non-

spatial attributes of the component. Different compo-

nents provide different specialized editors to alter and

customize component attributes.

Editing a Plate

Figure 4 shows the “Plate Editor” that appears

when the default plate is double clicked.

Most components have names which are used to

reference the component. The name is generally avail-

able to edit. In this plate editor the characteristics of the

window associated with the plate are chosen on the left.

A list of plate symbols is displayed on the right. Here the

developer can specify procedures and variables that

relate to the activity of the plate.

Event Response Methods

Below the list of plate symbols is a list of pre-

defined plate events which have names such as

“BeginDrag”. These are event response procedures.

SAW provides to the developer the popular event-driven

user interface model. These event response procedures

invoke when the corresponding events occur. BeginDrag,

for example,  invokes when the left mouse button is

pressed and the cursor is on the window representing this

plate. By editing the bodies of these procedures and

including motion directives it is possible to respond to

mouse activity and perform operations such as a “drag-

and-drop” of the servo controlled mechanism.

Adding a Procedure

If the developer chooses to add a procedure an

editor such as Figure 5 is provided.

Figure 4. Plate Editor

Figure  6. Bump Editor

This particular editor is being used to write the

force reflection algorithm.

Adding a Graphic Element

Components that have visual content are gener-

ally created by selecting the tool for that component and

dragging a rectangle to indicate the component size and

location. Figure 6 shows the addition of a chamfered

bezel and indentation.

Figure 5. Editing a Procedure

These features are “raised surface” or “bump”

graphics. The Bump Editor allows changing the depth,

direction, framing, and color of the bump.



5

Displaying Information

Figure 7 shows the addition of several text com-

ponents which provide labels and displays for applica-

tion information.

The text component for the master joint is named

MasterDisplay and the slave's is named SlaveDisplay.

The procedure in Figure 8  displays the positions

of the master and slave mechanisms in these text compo-

nents using the Writeln method.

Adding a Button

In Figure 9 the button that starts force reflection

mode has been added and is being edited.

Figure 7. Adding Text Components Figure 9. Button Editor

Figure 10. Force Reflect Button Click ProcedureFigure 8. Procedure UpdateDisplay

The button editor allows changing the name,

legend, default status and "click" event response proce-

dure for the button. Figure 10 shows the body of the click

procedure. This procedure  invokes when the button is

pushed.

The procedure updates the mode status in the

ModeDisplay, aborts any previously started motion

tasks, moves the slave to the master's current position,

and schedules the force reflection task. Force reflection

operates as an independent process at a frequency of 1

kHz, continually performing the multiple-input, mul-

tiple-output averaging control algorithm.

Many objects that can receive information such as

text, editors, or files,  respond to Writeln. This

UpdateDisplay procedure will be scheduled to run at 5

Hz by Setup, a plate event response procedure which

invokes  when the plate first begins operation.



6

Adding a Catalog Component

One application requirement is to plot the position

difference between the master and slave. The best way to

provide data collection and display capability is to find

a pre-fabricated subassembly which performs the de-

sired operation. These pre-fabricated parts are accessed

through "catalogs" invoked by choosing the catalog icon

on the tool bar. Catalogs contain “data sheets” of com-

ponent assemblies such as joysticks of various styles for

various numbers of axis and storage scopes of various

types.

The use of a catalog is very similar to the use of the

Windows Help system. Summaries of components found

in the catalog can be read by scrolling through the catalog

index. The developer can also directly browse through

the catalog using the forward and reverse browse but-

tons. A data sheet, such as shown in Figure 11, contains

a title for the subassembly, a text description of what the

subassembly is for and how it is used, and a picture of the

subassembly.

The developer can create new data sheets for an

existing catalog or create new catalogs by using “cut and

paste” to move work from the drawing area into new data

sheet pages.

The Hierarchical  Package Metaphor

After selection the subassembly is placed into the

application as a “package” as seen in Figure 12.

It is evident that the catalog component is a

“package” because it has ribbons and a bow on it. Inside

this “package” is the selected storage scope. The package

conveys an important structural aspect of the Servo

Application Workbench. Applications constructed with

SAW are structurally hierarchical. Packaged compo-

nents are subassemblies to the plate they attach to and

distinct from other components.

The most conspicuous attribute of the storage

scope is the  appearance. However along with the

appearance, inside the package, are the procedures,

functions, objects, and variables which constitute the

behavior of the storage scope. If a second storage scope

is placed into the application it would appear as a second

package. Even though it would contain copies of the

same components (i.e. another trigger button and fit

button) these components would be distinct from the

first subassembly. The relationships of each component

to other components in the package remains intact

Figure 12. Gift Wrapped Subassembly

This particular data sheet describes a pop-up

single channel storage scope with a "Trigger" button to

initiate data collection and a “Fit” button that “zooms

out” after “zooming in” to inspect detail. The subassem-

bly is included in the application by pushing the select

button.

Figure 11. Subassembly Catalog



7

regardless of the presence of duplicate component names

being used in the application. Conflicts with other

components having the same name are avoided because

relationships are based first on what is found inside the

package. The analogous software principle is “symbol

scope”.

This isolation allows the developer to safely intro-

duce new subassemblies into the application without

duplicate name conflicts. Scoping is an important prin-

ciple for any system providing conflict free component

reuse.

Double clicking a package causes SAW to “open”

the package and display the contents. The rest of the

application is erased since it is no longer visible in the

current scope. To see the run time appearance of the

application uncheck the gift wrap Subassemblies display

option in the SAW view menu.

The storage scope is connected to the error infor-

mation by changing a statement in the storage scopes's

data collection procedure as indicated by the storage

scope's data sheet.

Figure 13 shows the addition of a button to invoke

the storage scope.

The click procedure for this button has one state-

ment which directs the storage scope to pop up. Once

popped up the controls on the storage scope are available

to perform the data collection and display.

By using similar techniques additional controls

are provided and additional functionality described to

complete the application. Selecting the "Start" item from

the "Run" menu in SAW causes the application to begin

operation and have the appearance shown in Figure 1.

Development Environment Contributions

The following attributes help programs such as

the Servo Application Workbench contribute to motion

application development.

Figure 13. Popping Up a Subassembly

The Clip Art Metaphor

A good way to save time developing anything is

to use high level components rather than primitives.

When components have visual content browsing through

a set of components aids in component selection. A

metaphor for this process is “clip art”.

“Clip art” is published in books that can be

purchased from the bookstore. Each book has a particu-

lar theme, such as “restaurant pictures” or “sports activi-

ties”. The pages of the book contain pictures of various

sizes and types that relate to the theme of the book. By

copying the page in the book you can “clip out” the

desired image and paste it into a flyer or notice enhancing

the flyer with an image that would have been very hard

to draw. Clip art, although simple, is a powerful tool for

the following reasons:

• Developers can conveniently access the work of

others.

• The developer can start work at the component

integration step rather than the blank-sheet-of-

paper (or blank screen) step.



8

• Developers can recognize components in the

catalog they might not know how to describe.

This changes the development emphasis from

synthesis to recognition.

• Developers can alter an "almost right" compo-

nent found in the catalog and avoid generating the

desired component completely from scratch. Even

if exactly what is needed is not found, something

close most likely can be found providing a signifi-

cant head start.

• Catalogs invite browsing and study allowing the

developer to learn from the structure and example

of components that solve similar problems.

The catalogs of the Servo Application Work-

bench support the clip art metaphor and provide the

application developer with these benefits.

“WYSIWYG”

What-You-See-Is-What-You-Get (WYSIWYG)

is a powerful approach in constructing applications that

have visual components such as controls and buttons. It

is much simpler to show the system what is desired rather

than describing numerically or symbolically a spatial

component. Microsoft Windows provides a good envi-

ronment for constructing WYSIWYG types of systems.

The Non-Preemptive Windows Problem

While constructing this application a procedure

was written that scheduled the force reflection algorithm

to execute as a separate, autonomous task at a frequency

of 1 kHz. This was accomplished with a single program

statement in the body of a fairly short procedure. How-

ever this represents a large contribution. Windows does

not normally support this type of preemptive multitasking.

SAW operates along with a behind-the-scenes

Multitasking extension to Windows that allows this type

of high frequency multitasking service to be provided in

a simple and accessible way.

Any real time system that runs under Windows

must either provide a solution to the Windows non-

preemptive multitasking problem or be willing to “lock

out” Windows operation for extended periods while the

real time application controls the computer. The second

“lock out” solution is usually not useful for interactive

systems.

Windows is Difficult to Program

Windows is difficult to program regardless of the

additional complications of real time applications. In the

last year a new generation of language products has

emerged that greatly simplifies the creation of Windows

applications. Example programs in this class are Visual

Basic and Turbo Pascal for Windows. These environ-

ments “hide” many of the complications of Windows

programming allowing the application developer to

focus on the problem at hand without being over-

whelmed by Windows considerations, most of which the

developer is not concerned with. The Servo Application

Workbench is in this class of development environment.

Summary

Windows is fast becoming a familiar standard for

operator interface systems. Without an application de-

velopment framework, such as the Servo Application

Workbench, motion application developers creating

Windows applications are “on their own” to integrate

together a high level language system, multitasking

extensions to Windows, motion control system, Win-

dows application development tools, and component

reuse libraries. The benefit of the Servo Application

Workbench is that the integration of these elements has

already been accomplished. Access to the functionality

of these components has been greatly simplified allow-

ing the motion application developer to focus on the

problem at hand rather than the complicated mechanics

of a graphical user interface operating environment with

real time extensions.



9

References

1) C. Petzold, Programming Windows, MicroSoft

Press, Redmond, Washington, 1990

2) T. Swan, Mastering Turbo Assembler, Hayden

Books, Carmel, Indianna, 1990

3) Intel Corporation, i486 Microprocessor

Programmer's Reference Manual, Osborne

McGraw-Hill Book Company, New York, 1990

About the Author

J. Randolph Andrews received his  B.S. M.E. in

1981, B.S. E.E. in 1981 and M.S.M.E. in 1983

from the Massachusetts Institute of Technology.

He participated in the MIT Mechanical

Engineering Department's DeFlorez Design

Competition each undergraduate year winning

1st place '78, 1st place '79, 1st place '80 and 1st

place '81.

Andrews spent 4 years at Hewlett Packard's

corporate research laboratory in the Applied

Physics Research Center as well as the

Manufacturing Research Center.

The following 4 year period was spent with Galil

Motion Control.

In July '91 Andrews founded Douloi Automation

to provide motion control hardware and software

components primarily for use with Microsoft

Windows.

Professional interests include motion control,

software/electrical/mechanical system design

trade-offs and high abstraction programming

techniques and tools.


