
1

Introduction

As motion control applications advance in capability

and sophistication it is necessary to package motion applica-

tion behaviors in a manner that allows a developer to manipu-

late more and more abstract “building blocks” yet retain the

flexibility to solve a unique problem with special require-

ments. Behaviors of interest to motion application developers

include electronic cam operation, tangent servoing, and robot

kinematics to name a few.

There are also needs for user interface behaviors such

as joystick controls, motion renderings, curve editors and

virtual instruments. These building blocks need to be so

simple to use that they can be “dropped” into an application,

yet accessible enough to be altered to meet a specific applica-

tion need. The concept of building an application from

standard building blocks is familiar for mechanical and

electronic systems but has been elusive for the software

system.

The objective of this talk is to provide an overview of

what can now be done with software components as they relate

to motion control applications. The following sections discuss

Software Component Background, Component Mechanisms,

Component Categories and Summary. Example applications

are presented which demonstrate the benefits of developing

with software components.

Software Component Background

Historically, the best way to make use of prefabricated

software has been through “function libraries” which contain

a collection of routines that relate to some particular purpose.

Examples include matrix manipulations, graphic routines, or

manipulating a particular add-on hardware card. These li-

braries and “drivers” have been a help to developers but have

not had great impact. In most cases it was required that these

A Software Component Library for Motion Control

libraries be written in the language that the developer has

chosen to use. Because of the various languages available, and

various implementations of any particular language, it was

difficult to provide a broadly used library without a great deal

of rewriting on the part of the library provider.

Software developers have long looked to computer

hardware as a metaphor for a desired software component

model. Hardware development has outpaced software devel-

opment because of the ability of hardware engineers to readily

use prefabricated components. This component reuse occurs

on two levels.

Backplane Metaphor

A computer often has some “backplane” or intercon-

nection mechanism into which high level circuit cards plug

allowing them to communicate to each other. The backplane

implements a set of communication standards and protocols

that compatible cards follow. The emphasis of the backplane

metaphor is communication between systems not necessarily

made by the same vendor. Software developers have asked the

question “why isn’t there a software backplane that allows

software components to communicate to each other in a

similar manner?”

Integrated Circuit Metaphor

A second level of the hardware metaphor is the

integrated circuit. Circuit boards are often composed of

standard integrated circuits with well understood behaviors.

In creating new circuit boards a hardware designer can pull

off his shelf a data book containing a large collection of

components and combine these components together to cre-

ate a desired function. These parts also conform to intercon-

nection standards. IC-to-IC interconnection usually operates

at higher speed and performance than the backplane inter-

A U T O M A T I O N

J. Randolph Andrews
Douloi Automation

740 Camden Avenue Suite A1
Campbell, CA 95008-4102

(408) 374-6322

Paper presented at the
1993 Incremental Motion

Control Systems and
Devices Symposium

Copyright © 1993 Douloi Automation

2

connection standard. These IC’s represent a higher degree of

functional granularity than the components that plug into the

backplane. Through ASIC and FPGA technology, collections

of standard cells can be combined together into a new

integrated circuit. This integrated circuit metaphor is

“nestable” allowing new integrated circuits to be composed

from pre-existent integrated circuits. This has also been

referred to as an “assembly” metaphor where new assemblies

are composed of subassemblies. Software developers have

asked the questions “Why isn’t there a data book of software

IC’s that can be combined to create new functionality?”.

Component Mechanisms

In the last several years, advances have occurred

which to some degree provide the Software Backplane and

Software IC to application developers. The following sections

discuss the various ways this has occurred.

Windows Dynamic Link Libraries

Regardless of its technical merits, Microsoft Windows

has become the graphical user interface of choice for the IBM

PC. Although not normally a real-time environment, prod-

ucts such as Intel’s iRMX for Windows and Douloi

Automation’s SI-3000 provide real time pre-emptive capa-

bilities to Windows. The most useful software backplane

advance has been through Microsoft Windows Dynamic Link

Libraries. Dynamic Link Libraries communicate to applica-

tions and each other through a standard calling convention

which is simple to create and simple to use. More importantly,

dynamic link libraries written in different computer lan-

guages can interconnect with no additional consideration or

difficulty. This is the key enabling step. Now a vendor can

provide a single component that can be used by anyone

regardless of the programming language they choose to use.

Connecting to a DLL requires only that you describe the

parameters to pass to the function and where the function is

located. Some systems, such as Douloi Automation’s SI-

3000, can both respond to as well as request DLL calls from

other software components.

Windows also provides Dynamic Data Exchange as an

interconnection method. This is analogous to hooking up

instruments through an IEEE-488, HPIB style communica-

tion link. Like such a hardware link, it involves resolving who

is the “talker”, and who is the “listener”, and the protocol for

the conversation. Although DDE is flexible and important, it

is slower and more difficult to implement than Dynamic Link

Libraries.

Object Technology

At the Software IC level, Object Technology has made

important advances in creating encapsulated, reusable com-

ponents. Although not a universal solution, object program-

ming is an important tool in any developer’s toolbox. Object

Technology provides a helpful framework for organizing

many types of problems. Objects can be created with lan-

guages such as C++, Borland Pascal, and Douloi Pascal. The

major benefit of object programming is that it allows a

developer to create new functionality which is similar to an

already present functionality by specifying only the differ-

ences. Object technology tends to be very language specific.

Visual Programming

Visual programming is a term which has come to

mean an interactive software development environment where

the program is described spatially with drawing techniques as

well as with the commands of a programming language.

Examples of such programming environments include

Microsoft’s Visual Basic, Microsoft’s Visual C++, National

Instruments Labview, Digitalk’s Part Workbench, Next

Computer’s Next Step, and Douloi Automation’s Servo Ap-

plication Workbench.

The level of abstraction of “primitives” in a visual

programming system tends to be much higher than in a

normal programming system. As well as conventional data

types such systems also include more advanced components

such as buttons and list boxes. The shape and position of these

components are established by pointing with the mouse. The

behavior of the component is modified through program

commands and attribute settings.

Component Categories

Software component technology is very important for

3

Figure 1. Electronic Cam Editor

Figure 2. Axis Sharing/Obstacle Avoidance Motion Application

software application development in general. What types of

components or functions are most important for motion

applications in particular? The following categories are fre-

quently encountered. Along with a description of each cat-

egory, some example applications are shown to illustrate the

role software component technology has had on the applica-

tion development.

Motion Coordination

Motion coordination components are used to provide

or support specialized relationships between axis such as

electronic gearing, tangent servoing, moving-frame manipu-

lation, and robot kinematics.

Figure 1 shows an “Electronic Cam Editor”. The basic

shape of a cam lobe is portrayed as a curve in the lower

drawing area. The curve is placed and altered by dragging the

descriptive points with the mouse. The upper drawing area

displays the resulting shape of the cam after the lower image

has been wrapped around a cylinder a selectable number of

4

Workbench.

Joysticks

Joystick components give the operator of a motion

control system the ability to manually direct the movement of

the mechanism during a training phase, or as part of the setup

of the machine. Some joystick components relate to switch

closures of physical hardware and interpret a closed switch as

a request to perform motion at a constant speed. Using the

computer mouse it is possible to “drag and drop” a mechanism

as was described in the spherical robot example. It is also

possible to create “virtual joysticks” which appear on the

computer screen and have the appearance of a physical

times, possibly mirrored back-to-back and possibly inverted.

The resulting representation can then be used to prescribe the

displacement of a mechanism based on the input angle of the

cam in a master-slave manner. This component was created

with Servo Application Workbench in about a day.

Figure 2 shows a motion application used to drive a

spherical robot having 3 spatial degrees of freedom and a

radial wrist rotation. The medium sized sphere in the middle

of the work area represents the robot's tool location. Dragging

and dropping the sphere on the computer screen causes the

robot to reposition the tool in a corresponding vertical Carte-

sian plane. The small circles are dragged into position on the

computer screen with the mouse to prescribe the Cartesian

trajectory. The black ellipses below the circles are “shadows”

helping to convey a three dimensional effect. The small

spheres can be interpreted as control points to describe a curve

from a number of available curve types or used as destinations

for linear interpolation. The orientation of the tool held by the

robot is prescribed by an external sensor and may be indepen-

dent from the tool’s Cartesian position even though the

rotation of the tool and movement of the tool kinematically

share two axis. The largest sphere positioned on the screen

represents a repulsive force field. This force field pushes away

the Cartesian trajectory if it passes nearby providing a type of

obstacle avoidance. What would have been a straight line in

Cartesian space is changed into a Cartesian space curve which

dodges the repulsive sphere.

Object technology helps represent the spheres on the

screen and is involved in representing the robot. The different

elements of this application, axis sharing to provide indepen-

dent tool rotation, Cartesian-to-spherical kinematics, and

Cartesian space repulsive force field obstacle avoidance, are

calculated and combined at 1 kHz to provide commanded

setpoint information to the servos at the controller sample rate

of 1 kHz While this is taking place the user is able to direct the

activity of the system by dragging and dropping the different

user interface elements with the mouse.

The use of repulsive force fields to deflect a robot

trajectory was explored in a Master’s thesis written in 1983

and required many months to implement. The benefits of

software component technology allowed this application to be

constructed in approximately 3 days with Servo Application

joystick. Figure 3 shows an example of a 2 dimensional virtual

joystick.

The joystick “pops up” when requested and can be

moved around on the screen so as to not obscure information

which might be beneath it. Clicking the mouse on one of the

arrows causes the mechanism to move in the indicated

direction. The further away from the center of the joystick, the

faster the motion. Letting go of the mouse button causes the

mechanism to come to a stop. Experience to date has shown

that “position” joysticks, such as in the previous example, are

much more useful than “velocity” joysticks such as this one

Figure 3. Virtual Joystick

5

although usefulness varies from application to application.

This joystick was constructed in about 30 minutes.

Displays

Display components present information or state about

the system to the user. Information might be textual or

graphical. Graphical information might be expressed as a

chart, or as the positions and shapes of geometric items.

Figure 4 shows a small “spin gauge” alongside a position

display.

 This display component is used to show the position

of the X axis motor. When the X axis is commanded to move,

the gauge spins and the position value changes indicating the

movement. This is helpful for software development in the

absence of a mechanism or during a demonstration.

Figure 5. Thumbwheel Control with Subassembly Catalog and Assembly Browser

Figure 4. Graphical and Textual Displays

Controls

Control components effect or establish a new state for

the motion application. Controls can include components

such as buttons, list boxes, thumbwheels and numeric editors.

6

Figure 6. Virtual Instruments used to Test Servo Control Board Hardware

Figure 5 shows a page from a Thumbwheel Subassem-

bly Catalog in Servo Application Workbench. The “virtual”

thumbwheels in the software catalog have a very similar

structure to their mechanical counterparts. The Assembly

Browser shows that the thumbwheel is composed of a number

of individual digit modules, and that each module is com-

posed of a display, a plus button, and a minus button. These

components are butted up against one another and then

grouped with a “bezel” graphic much like a mechanical

thumbwheel set would be. This thumbwheel is composed of

subassemblies, and itself becomes a subassembly to the plate

that it is attached to in the application. This illustrates the

assembly metaphor frequently encountered in visual pro-

gramming. This thumbwheel catalog, containing the digit

module, 6 arrangements of thumbwheels, and an example

application, was built in about an hour.

Save/Restore

Save and Restore components are used to preserve the

current configuration of the system from one invocation to

another. Configuration information includes compensation

and profile parameters. It is also possible to save and restore

vector arrays which can be used for storing taught positions.

Instruments

Instruments are higher level components which assist

in specific tasks usually related to setup or diagnostics.

Examples of instruments include storage scopes, input moni-

tors and output switch pendants. Instruments are usually

composed of display and control components and mimic

physical instruments to convey familiarity to the user.

Figure 6 shows a series of instruments used to test

servo control hardware. The Analog Test instrument is used

to set the open loop torque on the hardware and can be used

for setting the offset. The Output Test instrument manipulates

output bits to confirm proper operation. The Check Encoders

instrument displays encoder positions for each of six axis and

7

Figure 8. Curve Interpolations Perfomed by DLL Library

Figure 7. Graphics DLL Connected to Application

software components or between a software component and a

hardware component. Software-to-hardware connectors serve

as “drivers” for the hardware and present the functions of the

hardware to the development environment in more abstract

and simple to use terms. Software-to-software connectors

usually bridge the gap between a language specific object

environment and a language independent software backplane.

Figure 7 shows a 3 dimensional bar chart representing

information collected from an application. The chart appears

in response to pushing a button on the motion application

control panel and behaves as if it was part of the application

however it is not. Charting capabilities are provided by a third

party Windows DLL. The application requests charting ser-

vices on its behalf by communicating to the DLL through the

software backplane. The connector component which allows

the motion application to make these requests provides a

description of the procedures and functions available and

indicates the name of the DLL where they are found.

Function Libraries

Although function libraries are the oldest packaging

method for software components such libraries are still

allows for the arming and triggering of capture inputs. The

Input Monitor presents the states of the input ports. The

Enable Control manipulates amp enable signals to check

proper operation.

Connectors

Connector components act as “patch cords” between

8

useful. Function libraries helpful to motion control applica-

tions include curve fit libraries and string manipulation.

Figure 8 shows a turning lathe control panel where the desired

part shape has been expressed as a series of points. Curve fit

techniques are used to describe the desired part shape as well

as a series of intermediate shapes needed to change the raw

stock into the final part.

Summary

A mechanical engineer would be considered foolish to

specify and fabricate a standard screw if it could be purchased.

The realization of prefabricated components has moved

through the mechanical design mainstream and the electrical

hardware design mainstream. At this point in time software

component technology is just beginning to move into the

software design mainstream in the form of Windows Dy-

namic Link Libraries, Object Technology, and Visual Pro-

gramming.

The additional complexities of developing a motion

application require all of the help that can be brought to bear

by these techniques. Benefits of software components include

an improved user interface, more reliable operation, and more

rapid application development.

Bibliography

Andrews, J. Randolph: "A Servo Application
Development Environment for Microsoft Windows”,
In Proceedings of the Twenty First Annual Symposium
on Incremental Motion Control Systems and Devices,
San Jose, CA, 1992.

Andrews, J. Randolph: “An Advanced Motion Control
System Architecture Based , On a 386 PC”, In
Proceedings of the Twenty First Annual Symposium
on Incremental Motion Control Systems and Devices,
San Jose, CA, 1992.

Andrews, J. Randolph: User Manual for Servo
Application Workbench. Douloi Automation, 1992.

Andrews, J. Randolph: " Impedance Control as a
Framework for Implementing Obstacle Avoidance in
a Manipulator", Master's Thesis, MIT Dept. of
Mechanical Engineering, 1983.

Brogan, William: Modern Control Theory, Prentice
Hall, New Jersey, 1991

Budd, Timothy: An Introduction to Object-Oriented
Programming Addison-Wesley, Massachusetts, 1991

Coad, Peter & Yourdon, Edward: Object-Oriented
Analysis. Yourdon Press, New Jersey, 1990

Cox, Brad: Object Oriented Programming: An
Evolutionary Approach, Addison-Wesley Publishing,
1986, 1991

Ellis, George: Control System Design Guide, Academic
Press, San Diego, 1991

Franklin, Gene & Powell, David: Digital Control of
Dynamic Systems, Addison-Wesley, Massachusetts,
1981

Liskov, Barbara, & Guttag, John: Abstraction and
Specification in Program Development, MIT Press.
Massachusetts, 1986

Meyer, Bertrand: Object-oriented Software
Construction, Prentice Hall, New York, 1988

Peters, Lawrence: Advanced Structured Analysis and
Design, Prentice-Hall, New Jersey, 1987

About the Author

J. Randolph Andrews received his B.S. M.E. in 1981,
B.S. E.E. in 1981 and M.S.M.E. in 1983 from the
Massachusetts Institute of Technology. He participated
in the MIT Mechanical Engineering Department's
DeFlorez Design Competition each undergraduate
year winning 1st place '78, 1st place '79, 1st place '80
and 1st and 2nd place '81.

Andrews spent 4 years at Hewlett Packard's corporate
research laboratory in the Applied Physics Research
Center as well as the Manufacturing Research Center.

The following 4 year period was spent with Galil
Motion Control.

In July '91 Andrews founded Douloi Automation to
provide motion control hardware and software
components for use with Microsoft Windows.

Professional interests include motion control, software/
electrical/mechanical system design trade-offs, high
abstraction programming and visual programming
techniques and tools.

