
Advanced Motion Solutions Using Simple Superposition Technique

Abstract

 An important strategy for addressing complexity is

to decompose a problem into smaller pieces, solve the pieces,

and recombine the answers to yield a solution. A simple yet

powerful superposition technique is presented which uses this

strategy to solve several types of advanced motion control

problems. Multiple motion related descriptions are used on

separate aspects of a problem to independently solve each

aspect. These descriptions are then combined in real-time to

yield a resultant motion which solves the combined problem.

Three technique examples are presented including accelera-

tion-bounded continuous path motion, backlash compensa-

tion, and satellite antenna pointing from a moving reference

frame. The breadth of the example applications illustrates the

general usefulness of this superposition technique. Motion

controller requirements for accommodating superposition

are discussed.

Introduction

Movement Transformations

A common technique used in robotics to generate

motion control trajectories involves describing a problem in

a preferred space, for example Cartesian space, and trans-

forming positions to the corresponding mechanism joint

positions. This idea is represented by figure 1.

Figure 1. Single Input-Single Output Transformation

The equations which transform between Cartesian

and joint space are called kinematic equations. Kinematic

equations are generally single vector input, single vector

output, closed form expressions.

To produce joint position time history we can com-

mand an imaginary Cartesian mechanism in Cartesian space.

The time history of this imaginary mechanism is transformed

by the kinematic equations into the corresponding joint

position time histories of the desired Cartesian path. In this

paper such an imaginary mechanism is called a “virtual”

mechanism composed of “virtual axes”. Virtual axes have the

same motion profiling behavior as conventional servo axes

however they have no physical motor attached to them. Some

motion controller manufacturers call these axes “phantom

axis”. The motion control system now looks like figure 2.

Figure 2. Virtual Mechanism Contribution

Movement commands come into the virtual Cartesian

robot, time history of Cartesian position flows through the

transformation to become joint positions for the actual mecha-

nism.

Multiple-Input, Single-Output Transformations

The single-input, single-output form of this transfor-

mation is useful. What additional benefits are gained by

having multiple inputs? Figure 3 illustrates the concept.

A U T O M A T I O N

J. Randolph Andrews
Douloi Automation

740 Camden Avenue Suite B
Campbell, CA 95008-4102

(408) 374-6322

Paper presented at the
1994 Incremental Motion

Control Systems and
Devices Symposium

Copyright © 1994 Douloi Automation

minimum amount of time. Obstacle avoiding trajectories can

be described by “corner points” and an associated radius

inside which the robot is allowed to “cut the corner”. Inside

the radius the shape of the trajectory is not important. Outside

the radius the trajectory needs to be on the line between the

neighboring corner points. An example path is shown in

figure 4.

Figure 4. Corner Cutting Trajectory

The obvious solution to this problem is to move along

a trajectory composed of straight lines and circular arcs.

However this approach has a problem. Motion controllers will

usually attempt to move along such a curve description at

constant path velocity. As the corner-cutting radius is reduced

there is a point where the acceleration limit of the motors is

exceeded. In the limiting case of a corner cutting radius of 0

the robot is being asked to make a sharp corner at high speed

resulting in discontinuous velocity. The solution being sought

should gracefully handle the case of 0 corner cutting radius.

A different approach is needed that allows corner-cutting

radii to be arbitrary values without producing excessive

acceleration.

Solution Strategy

Consider the following specific case where a Cartesian

robot is asked to move along a corner-cutting trajectory

composed of segments which are aligned with the robot’s

axis. This case is shown in figure 5.

Figure 3. Multiple Input Transformation

Simulated movement is performed by independent

virtual mechanisms responding to command or sensor infor-

mation. The time history of these different trajectory sources

is combined in real-time to produce a single result. In the work

presented here the combination of inputs is simply addition

although other combinations are possible. In a manner analo-

gous to linear superposition, the summation of the indepen-

dent solutions produces a combined result which solves the

combined problem. In this paper the technique is referred to

as motion superposition.

A helpful mechanical analogy for motion superposi-

tion is to consider the class of problems that could be solved

if you mechanically attached on top of a multiaxis mechanism

a second independent mechanism. Each mechanism can be

commanded to move independently. The physical attachment

of the two mechanisms results in the positions of each being

added together to produce the final position. Motion superpo-

sition as a control technique accomplishes the same result

without the mechanical redundancy. The following examples

show the usefulness of motion superposition.

Example 1: Acceleration Bounded Continuous
Path Motion

Problem Description

When performing robotic assembly it is important to

avoid certain obstacles while getting to the destination in the

Figure 5. Aligned Segment Special Case

This particular case has an easy solution. Rather than

treating the X and Y axis as a coordinated pair, instead treat

them as independent axes. Start by initiating X movement

towards point A. When the X axis passes point B and enters

inside the corner cutting radius, simply start the Y axis before

the X axis motion has completed. If the accel and decel values

for X and Y are the same, the Y axis will just be getting to point

C as the X axis gets to point A. Note that the "launch" of the

second axis is dependent on when the first axis enters the

corner cut radius, not on when the first axis beings to decel.

These two motion attributes are independent. If the corner-

cutting radius is reduced to 0 the movement degenerates to

stopping at the corner, the correct behavior for 0 radius.

Clearly the path is acceleration bounded because each inde-

pendent axis is performing a trapezoidal motion profile. This

solution has all the qualities we want but the unfortunate

restriction that the trajectory can only be composed of seg-

ments aligned with the axes of the machine.

In this particular case the movement of the mechanism

is the result of adding together the movements of the X and Y

axis. By overlapping the moves we save time. This solution

can be carried into a more general form.

General Solution

Let’s consider the more general corner-cutting trajec-

tory shown in figure 6.

Figure 6. Coupled Segment General Case

This trajectory is composed of segments not aligned

with the axis of the machine. Performing the linear section of

the segment requires coordination of the two axes.

To solve this case two virtual XY mechanisms will be

used. The first mechanism will be called XYA and the second

XYB. These two mechanisms will perform the role of the

independent axes in the orthogonal case. XYA will be respon-

sible for the first segment. XYB will be responsible for the

second segment. XYA will begin motion first. After XYA

gets within the corner-cutting radius, XYB will begin move-

ment before XYA finishes. The vector sum of the movement

of the two virtual mechanisms is calculated in real-time to

provide the commanded setpoints for the physical servo

system.

Implementation

The program used to implement the strategy is shown

in figure 7. The first set of statements set the XYA and XYB

virtual mechanisms to 0 position. The next statement sched-

ules a task to execute every millisecond. This task is named

"Superimpose" and performs the motion superposition calcu-

lation. A data logging and display task is started next. A 2

Figure 8. Motion Superposition Equation

This equation calculates the vector sum of the XYA

and XYB virtual mechanisms and supplies the vector to the

XY physical servos as commanded setpoints.

Experimental Results

The commanded setpoint trajectory generated by ex-

ecuting this program is shown in figure 9.

Figure 9. Corner Cutting Experimental Results

The trajectory contains the attributes desired includ-

ing linear motion outside of the corner cut radius, and a

smooth transition between segments within the radius.

How well is this approach solving the acceleration

bound requirement? As an extreme case consider what hap-

pens if XYB’s movement “folds back” completely on XYA’s

movement. In this worst case, the acceleration at the turn-

around point would be double the acceleration of the indi-

vidual virtual mechanisms. By setting the accel of XYA and

XYB to be half the system accel this approach handles all

cases, but that’s a bit wasteful. A more optimum approach

would be to set the XYA and XYB accels based on the angle

in between the segments they will be performing.

dimensional CornerPoint is established at coordinate

1000,1000. XYA then begins movement towards the corner

point. While on the way there a continuous check is made to

see how close XYA is to the corner point. When the distance

to the corner is less than the CornerCutRadius then XYB

starts its movement contribution.

The motion superposition equation, which executes

every millisecond, is shown in figure 8.

Figure 7. Corner Cutting Implementation

By using a “double buffer” style technique the XYA

and XYB virtual mechanisms can “leapfrog” one another to

direct movement along a multiple segment trajectory.

Interesting Attributes

One of the interesting attributes of this solution is that

we never explicitly specified the shape of the trajectory.

However we do know because of the profiling boundaries of

XYA and XYB that we are satisfying the constraints of the

problem.

Example 2: Backlash Compensation

Problem Description

We would like to specify the position of a mechanism

which has backlash. In order to monitor the actual position of

the mechanism a second encoder is provided. The motor

should not be commanded to move beyond its acceleration

limits. Conventional dual-loop solutions that could be used to

combine information from two encoders do not necessarily

respect the acceleration limits of the motor.

Solution Strategy

A two motor solution could be used to address this

problem. The first motor could provide the fundamental

movement of the system while the second motor could “adjust

away” any discrepancy between the actual position of the

mechanism and the desired position. Each motor would

continually operate with different criteria to solve that par-

ticular motor's contribution to the solution. However me-

chanically and electronically such a structure would be waste-

ful since both motors produce movement in the same me-

chanical direction.

To solve this problem with superposition two virtual

axes are used. The first axis is named IdealAxis and the

second is named AdjustmentAxis. IdealAxis will be regarded

as not having backlash. Motion commands will be sent to

IdealAxis representing the desired motion of the mechanism.

AdjustmentAxis will take on the responsibility of nullifying

the backlash.

Implementation

The movement of the mechanism for the experiment

is prescribed with the program shown in figure 10.

Figure 10. Ideal Movement Program

The first statement starts a data collection activity. A

short delay is introduced so as to see the beginning of the

movement in the data. The IdealAxis is then told to perform

a move to 4000, wait a second, and return to position 0.

The following program in figure 11 provides both the

adjustment control law and the motion superposition equa-

tions. This program executes as a separate, concurrent pro-

gram every millisecond.

Figure 11. Anti-Backlash Superposition Equation

The ZAxis is being used to read the encoder on the

output of the mechanism. The YAxis is the physical motor of

the system. The first command tells the AdjustmentAxis to

move so as to nullify any difference between the Actual output

position of the mechanism and the ideal, desired position.

This nulling is accomplished by jogging at a speed propor-

tional to the error, a simple "P" control loop directing a

velocity source.

The second statement in the program establishes the

YAxis commanded position by simply adding together the

ideal position and the adjustment position.

Experimental Results

Performance of this anti-backlash strategy is graphed

in figure 12.

have the backlash contribute position error on the output

encoder. This causes the anti-backlash control to take effect.

When the load reverses, the load position begins to

increase beyond the target position of 4000 counts. At this

point the driving motor compensates by dropping back and

pulling the load back into position, returning the load to the

upper line representing 4000. This offset in the drive motor

is retained as it moves back to position 0. The distance that the

drive motor compensated is measured to be about 600 counts,

the amount of backlash in the system.

Note that this anti-backlash technique is different

from the technique which adds or subtracts a backlash dis-

tance based on the direction of movement. The technique

shown here corrects the backlash based on the reversal of the

load itself as monitored through the output encoder, not on the

direction of ideal movement. The amount of adjustment is not

fixed but continually measured.

As was seen in the first example it is possible for a

double-acceleration case to occur if the superposition routine

asks the AdjustmentAxis to accelerate in the same direction

as the IdealAxis is accelerating. This double-accel issue can

be resolved by setting the accels of each virtual axis so as to

sum to the acceleration limit of the physical system.

Interesting Attributes

This technique is able to respect the motor’s accelera-

tion bound while at the same time being “continuous” in

application and not just as “end-point” correction.

Example 3: Antenna Pointing from Moving
Reference Frame

Problem Description

In this example we would like to enable a satellite

antenna, mounted on a ship, to point to one of several satellites

despite the ship’s rolling movement. In this paper just the roll

of the ship is considered although the concept could be applied

to other rotational axes as well.

Figure 12. Anti-backlash Position Histories

 The upper straight line represents a position of 4000

counts. The lower straight line represents a position of 0. The

graph is composed of two position histories. The line which

remains on top is the actual position of the mechanism output.

The line which ends below is the position of the driving motor.

Initially the motor and output agree since the backlash was

initially engaged in the direction of motion. Half way through

the dwell the load on the mechanism was reversed so as to

Solution Strategy

Eliminating the roll and directing the antenna would

be easy if the system had an intermediate platform. The

platform would be positioned by one control system and the

antenna attached to the top of the platform would be con-

trolled by a separate control system. The platform control

system would keep the platform stable by commanding the

platform to null-out the ship's roll. The antenna control

system would simply point the antenna with respect to the

stable platform. However, as in the previous example, this

approach is not good from a system point of view because of

the mechanical and electronic duplication.

Rather than having a physical intermediate platform

a virtual intermediate platform will be used. A roll sensor,

such as an encoder monitored damped pendulum or gyro

could be used to measure ship roll. This information will

serve as a stable base on which ideal movement will be added.

Implementation

The ideal motion requested of the antenna is shown in

the figure 13.

Figure 13. Ideal Antenna Pointing Program

As in the previous example, the first statement begins

a data collection. The IdealAxis is then moved to several

positions with dwells before returning to the original 0

position.

The superposition principle being applied in this

example is shown in figure 14. This program is scheduled to

execute every millisecond.

Figure 14. Antenna Superposition Equation

The YAxis is the drive motor for the antenna. IdealAxis

is the virtual axis commanded to move the antenna as if it was

on a stable platform. ShipRoll is a sensor indicating the

negative of the Ship's angle with respect to horizontal. The

superposition equation adds together the ideal desired behav-

ior with the negative roll information to compensate out the

roll movement.

Experimental Results

The response of the system is shown on the graphs in

figure 15. The top graph shows the ShipRoll sensor versus

time and has a sinusoidal shape. The second graph in the

middle indicates the commanded position of the IdealAxis

with respect to time. This axis performs conventional trap-

ezoidal motion as if there were no additional concerns or

aspects to the problem. The bottom graph is the commanded

position as sent to the drive motor and is the sum of the two

graphs above it. The basic pointing direction is continually

adjusted by the roll information to compensate the roll away.

is very important as an independent thread can manage the

superposition equation while other threads manage general

mechanism control. Finally, the application programming

environment should be able to express these custom relation-

ships easily and conveniently since the superposition equa-

tion is quite application specific.

Summary

From a mechanical viewpoint, these different prob-

lems have solutions which can be created by concatenating

together two independent servo controlled mechanisms. Each

mechanism responds to different control criteria to contribute

its part to the total resulting motion. Being physically concat-

enated, the resulting motion is the vector sum of the indepen-

dent mechanism movements. This motion superposition tech-

nique allows thinking in this partitioned mechanical manner,

but perform the concatenation of the two independent servos

in software rather than mechanical hardware. This combined

solution, expressed through a single servo controlled physical

mechanism, contains the behavior of both concepts but only

the expense of one mechanism. Controllers equipped with

suitable real-time performance can easily implement this

technique to simplify mechanical design while accomplish-

ing more advanced motion applications.

Bibliography

1) Andrews, J. Randolph: "A Software Component
Library for Motion Control”, In Proceedings of the
Twenty Second Annual Symposium on Incremental
Motion Control Systems and Devices, San Jose, CA,
1993.

2) Andrews, J. Randolph: "An Advanced Motion
Control System Architecture Based on a 386 PC”, In
Proceedings of the Twenty First Annual Symposium
on Incremental Motion Control Systems and Devices,
San Jose, CA, 1992.

3) Andrews, J. Randolph: "A Servo Application
Development Environment for Microsoft Windows”,
In Proceedings of the Twenty First Annual Symposium
on Incremental Motion Control Systems and Devices,
San Jose, CA, 1992.

Figure 15. Antenna Experiment Position Histories

Interesting Attributes

This approach assumes the ship will not roll at an

acceleration rate greater than the servos can handle. This

should be true given the dynamics of a ship verses the

dynamics of the servo. Additional axis could be provided to

control the remaining degrees of freedom needed to point the

antenna.

Controller Attributes Required for
Superposition Technique

In order for a motion control system to employ this

superposition technique several attributes are required. The

first attribute is “virtual” or “phantom” axes with which to

create virtual mechanisms. It is also necessary to be able to

perform the superposition calculations at high speeds, prefer-

ably at the controller sample rate, so at to keep the system

simple and not incur bandwidth limitations that can come

with interpolation between lower-sample-rate commanded

setpoints. It’s desirable to have high speed programs which

can perform floating point math quickly. A floating point

math coprocessor is also valuable, particularly for transfor-

mations involving trigonometry. Pre-emptive multithreading

4) Cox, Brad: Object Oriented Programming: An
Evolutionary Approach, Addison-Wesley Publishing,
1986, 1991

5) W. Brogan, Modern Control Theory, Prentice Hall,
Englewood, New Jersey, 1991

6) Franklin, Gene & Powell, David: Digital Control of
Dynamic Systems, Addison-Wesley, Massachusetts,
1981

About the Author

J. Randolph Andrews received his B.S. M.E. in 1981,
B.S. E.E. in 1981 and M.S.M.E. in 1983 from the
Massachusetts Institute of Technology. He participated
in the MIT Mechanical Engineering Department's
DeFlorez Design Competition each undergraduate
year winning 1st place '78, 1st place '79, 1st place '80
and 1st and 2nd place '81.

Andrews spent 4 years at Hewlett Packard's corporate
research laboratory in the Applied Physics Research
Center as well as the Manufacturing Research Center.

The following 4 year period was spent with Galil
Motion Control.

In July '91 Andrews founded Douloi Automation to
provide motion control hardware and software systems
for use with Microsoft Windows.

Professional interests include motion control, software/
electrical/mechanical system design trade-offs, high
abstraction programming and visual programming
techniques and tools.

